欢迎关注我的CSDN:https://spike.blog.csdn.net/
免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。
Scaling Laws (缩放法则) 是大模型领域中,用于描述 模型性能(Loss) 与 模型规模N、数据量D、计算资源C 之间关系的经验规律,揭示在大模型中,随着模型参数数量、数据集大小和计算资源的增加,模型性能的变化模式,指导更高效地分配资源,优化模型训练过程,实现更好的性能。这些规律不仅有助于预测不同规模模型的表现,还能为模型设计和训练提供理论依据,是推动大模型发展和应用的重要理论基础。
在 PLM 的迁移学习中,预训练 CLM 迁移至 MLM,通过 迁移缩放法则(Transfer Scaling Laws),合理的分配训练资源,以达到性能最优。同时验证,混合训练(Mixing Training) CLM 与 MLM,不如从零开始训练。
系列文章:
1. 从零开始与迁移学习
迁移缩放法则(Transfer Scaling Laws):预训练 MLM,迁移至 CLM,随着模型规模增大,收益递减;预训练 CLM,迁移至 MLM,随着模型规模增大,收益增加。不同 FLOPs 下 CLM 和 MLM 的损失(Loss)曲线,表明迁移策略的 有效前沿(Efficiency Frontiers) ,或 帕累托前沿(Pareto Frontier) 。如图:
同时训练多个目标时,可能存促进或干扰,即 协同效应 问题,训练顺序也是关键因素,先训练 CLM 再训练 MLM,效果影响较大,反之,效果影响较小。
从零开始训练(Training from Scratch) L ( C s ) L(C_{s}) L(Cs) 与 迁移学习(Transfer Learning) L ( C t ) L(C_{t}) L(Ct) 的 Loss 与 C 的法则:
L ( C s ) = a s × C s α s , L ( C t ) = a t × C t α t L(C_{s}) = a_{s} \times C_{s}^{\alpha_{s}},L(C_{t})=a_{t} \times C_{t}^{\alpha_{t}} L(Cs)=as×Csαs,L(Ct)=at×Ctαt
计算量与 Loss 的相关参数:
例如,以 CLM 的计算量 1 × 1 0 21 1 \times 10^{21} 1×1021 为例,从头开始训练(CLM)的 Loss 与 迁移学习(MLM to CLM)的 Loss,即:
L ( C s ) = 8.251 × ( 1 × 1 0 21 ) − 0.027 = 2.2362 L ( C t ) = 7.191 × ( 1 × 1 0 21 ) − 0.024 = 2.2531 L ( C s ) = 8.251 × ( 3 × 1 0 19 ) − 0.027 = 2.4582 L ( C t ) = 7.191 × ( 3 × 1 0 19 ) − 0.024 = 2.4507 L(C_s) = 8.251 \times (1 \times 10^{21})^{-0.027} = 2.2362 \\ L(C_t) = 7.191 \times (1 \times 10^{21})^{-0.024} = 2.2531 \\ L(C_s) = 8.251 \times (3 \times 10^{19})^{-0.027} = 2.4582 \\ L(C_t) = 7.191 \times (3 \times 10^{19})^{-0.024} = 2.4507 L(Cs)=8.251×(1×1021)−0.027=2.2362L(Ct)=7.191×(1×1021)−0.024=2.2531L(Cs)=8.251×(3×1019)−0.027=2.4582L(Ct)=7.191×(3×1019)−0.024=2.4507
例如,以 MLM 的计算量 1 × 1 0 21 1 \times 10^{21} 1×1021 为例,从头开始训练(MLM)的 Loss 与 迁移学习(CLM to MLM)的 Loss,即:
L ( C s ) = 10.125 × ( 1 × 1 0 21 ) − 0.034 = 1.9561 L ( C t ) = 11.133 × ( 1 × 1 0 21 ) − 0.038 = 1.7726 L(C_s) = 10.125 \times (1 \times 10^{21})^{-0.034} = 1.9561 \\ L(C_t) = 11.133 \times (1 \times 10^{21})^{-0.038} = 1.7726 L(Cs)=10.125×(1×1021)−0.034=1.9561L(Ct)=11.133×(1×1021)−0.038=1.7726
因此,推导出 MLM 从零开始训练 C s C_{s} Cs 与 从 CLM 迁移学习 C t C_{t} Ct 的达到最优 Loss 所需计算量的比例:
C t ∝ C s α s α t = C s − 0.034 − 0.038 = C s 0.894 C_{t} \propto C_{s}^{\frac{\alpha_{s}}{\alpha_{t}}} = C_{s}^{\frac{-0.034}{-0.038}} = C_{s}^{0.894} \\ Ct∝Csαtαs=Cs−0.038−0.034=Cs0.894
因此,最优的迁移学习策略:先使用 CLM 预训练,然后再训练 MLM。同时,CLM 与 MLM 的 混合训练(Mixing Training) 或改变训练顺序(即先 MLM 后 CLM),都没有带来显著的益处。推测原因是, MLM 仅专注于恢复 被损坏(Mask) 的标记,不具有因果性,如果 MLM 以从左到右的方式,根据上文预测序列中间的片段,才可能加快训练速度。
关于 CLM 与 MLM 的 混合训练(Mixing Training) 目标的验证 Loss,在全部模型规模中,从零开始训练都比混合训练的验证损失更低,表明,混合训练不如针对每个单独目标的专门训练有效。参考:
2. CLM 迁移至 MLM 的 Tokens 比例
左侧:为 CLM 预训练分配的 % 计算量的有效困惑度,即,% 计算资源表示在 CLM 预训练,剩余计算资源在 MLM 微调。最优的 CLM 预训练 % 计算资源范围为 [ 10 , 20 ] [10,20] [10,20],拟合的 D t D t + D f \frac{D_{t}}{D_{t}+D_{f}} Dt+DfDt 在最优损失范围内下降。
右侧:从零开始训练的模型(红色) 与 从预训练 CLM 微调的模型(绿色) 的验证 困惑度(PPL) 比较,表明从 CLM 微调在更少 Tokens 数量下,降低困惑度。
以模型规模 N = 85 M N=85M N=85M 为例,通过之前的公式,合理计算模型的计算量 C = 3 × 1 0 19 C=3 \times 10^{19} C=3×1019,即:
C C L M ( N ) = ( N 1.26 ∗ 1 0 − 3 ) 1 0.578 C C L M ( 85 × 102 4 2 ) = ( 85 × 102 4 2 1.26 × 1 0 − 3 ) 1 0.578 = 0.6 × 1 0 19 C M L M ( N ) = ( N 6.19 × 1 0 − 8 ) 1 0.776 C M L M ( 85 × 102 4 2 ) = ( 85 × 102 4 2 6.19 × 1 0 − 8 ) 1 0.776 = 3.4 × 1 0 19 \begin{align} C_{CLM}(N) &= (\frac{N}{1.26*10^{-3}})^\frac{1}{0.578} \\ C_{CLM}(85 \times 1024^{2}) &= (\frac{85 \times 1024^{2}}{1.26 \times 10^{-3}})^{\frac{1}{0.578}} \\ &= 0.6 \times 10^{19} \\ C_{MLM}(N) &= (\frac{N}{6.19 \times 10^{-8}})^{\frac{1}{0.776}} \\ C_{MLM}(85 \times 1024^{2}) &= (\frac{85 \times 1024^{2}}{6.19 \times 10^{-8}})^{\frac{1}{0.776}} \\ &= 3.4 \times 10^{19} \end{align} CCLM(N)CCLM(85×10242)CMLM(N)CMLM(85×10242)=(1.26∗10−3N)0.5781=(1.26×10−385×10242)0.5781=0.6×1019=(6.19×10−8N)0.7761=(6.19×10−885×10242)0.7761=3.4×1019
合理数据量 D = 63.58 × 1 0 9 D=63.58 \times 10^{9} D=63.58×109 是:
D = C 6 N = 3.4 × 1 0 19 6 × 85 × 102 4 2 = 63.58 × 1 0 9 = 60 B \begin{align} D = \frac{C}{6N} = \frac{3.4 \times 10^{19}}{6 \times 85 \times 1024^{2}} = 63.58 \times 10^{9} = 60B \end{align} D=6NC=6×85×102423.4×1019=63.58×109=60B
其中, D t D_{t} Dt 表示 CLM 预训练的 Tokens 数量, D f D_{f} Df 表示 MLM 微调的 Tokens 数量,全部数据量即 D t + D f D_{t}+D_{f} Dt+Df 。
有效转移标记(Effectively Transferred Tokens, ETT) : D t D_{t} Dt 是模型规模相同,在 MLM 上从零开始训练,以达到与在 CLM 上预训练的模型,相同损失所需的额外数据。如果预训练的 CLM 模型中的标记数量超过 D t D_{t} Dt ,那么 CLM 预训练的计算就是多余的。如果能提前知道 D t D_{t} Dt ,可以指导 CLM 预训练的标记分配。
迁移缩放法则(Transfer Scaling Laws),以模型规模 N = 85 M N=85M N=85M ,微调数据 D f = 48 B D_{f}=48B Df=48B 为例,计算预训练 D t = 8.57 B D_{t}=8.57B Dt=8.57B,占比约 14.28%,属于 [10, 20] 之间,符合法则:
D t = k × 1 D f α × 1 N β = 3.65 × 1 0 5 × 1 D f − 0.137 × 1 N − 0.369 D t = 3.65 × 1 0 5 × 1 ( 48 × 102 4 3 ) − 0.137 × 1 ( 85 × 102 4 2 ) − 0.369 = 9.2 × 1 0 9 ≈ 8.57 B < 12 B \begin{align} D_{t} &= k \times \frac{1}{D_{f}^{\alpha}} \times \frac{1}{N^{\beta}} \\ &= 3.65 \times 10^5 \times \frac{1}{D_{f}^{-0.137}} \times \frac{1}{N^{-0.369}} \\ D_{t} &= 3.65 \times 10^5 \times \frac{1}{(48 \times 1024^3)^{-0.137}} \times \frac{1}{(85 \times 1024^2)^{-0.369}} \\ &= 9.2 \times 10^9 \approx 8.57B < 12B \end{align} DtDt=k×Dfα1×Nβ1=3.65×105×Df−0.1371×N−0.3691=3.65×105×(48×10243)−0.1371×(85×10242)−0.3691=9.2×109≈8.57B<12B