SLAM中的非线性优-3D图优化之李群李代数在Opencv-PNP中的应用(四)

之前章节总结了轴角参数化,简单介绍了下四元数参数化,本节补充下李群-李代数表示的位姿,如何利用视觉3D到2D重投影误差的残差及雅可比

这是一个 3×6的矩阵

这是一个2×3的矩阵

这个推导结果与视觉SLAM经典教材(如《视觉SLAM十四讲》)中的结果是一致的。在实际的优化库(如g2o, Ceres)中,正是使用这些雅可比矩阵来指导优化方向,从而高效地求解最优的相机位姿。

相关推荐
33三 三like2 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a2 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者3 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗3 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
颜酱3 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919103 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878383 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
Coder_Boy_4 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信4 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann