统计学习方法(第二版) 第七章 支持向量机 (第三节)

本节介绍非线性支持向量机与核函数,这部分还是比较难的数学功底需要比较深厚。

目录

前言

一、为什么映射到高维线性可分。

二、核技巧

三、正定核的充要条件

四、常用核函数

五、非线性支持向量机

总结


前言

对解线性可分问题,线性支持向量机是一种非常好的分类方法,但是在很多情况中都是线性不可分的,那么又该怎么处理呢?

数学家最常用的思想就是将问题转化成以被解决的问题,那对于非线性可分的问题,怎样转化成线性可分的问题呢?

这里就有一个重要结论:在低维一个线性不可分的数据集映射到高维线性可分的概率越大,如果映射到无穷维,可认为线性可分的概率为一,即一定能找到一个超平面使数据可分。

这就是非线性支持向量机与核函数的思想应用。

一、为什么映射到高维线性可分。

初始有A、B、C、D四个点,颜色代表分类,在一维的角度我们没法找到一个点使得两类点线性可分,但经过y = x^2的映射到二维空间,我们可以看到数据集线性可分了。一维映射到二维。

二维映射到三维。

二、核技巧

三、正定核的充要条件

这部分还是有看不懂,数学基础知识还是比较弱,只简单介绍少核函数需要满足什么条件。

这里用线性代数的知识很好证明,不多说。Gram矩阵就是内积矩阵,所以是对称矩阵。

四、常用核函数

五、非线性支持向量机


总结

主要介绍非线性支持向量机与核函数方法,为什么核技巧要用到原问题的对偶问题来求解呢?因为可以大幅度减少计算量。下一节介绍优化算法,呜呜真是太难了,坚持住!

相关推荐
山烛7 分钟前
KNN 算法中的各种距离:从原理到应用
人工智能·python·算法·机器学习·knn·k近邻算法·距离公式
盲盒Q17 分钟前
《频率之光:归途之光》
人工智能·硬件架构·量子计算
guozhetao20 分钟前
【ST表、倍增】P7167 [eJOI 2020] Fountain (Day1)
java·c++·python·算法·leetcode·深度优先·图论
吃着火锅x唱着歌23 分钟前
LeetCode 611.有效三角形的个数
算法·leetcode·职场和发展
墨染点香26 分钟前
第七章 Pytorch构建模型详解【构建CIFAR10模型结构】
人工智能·pytorch·python
go546315846526 分钟前
基于分组规则的Excel数据分组优化系统设计与实现
人工智能·学习·生成对抗网络·数学建模·语音识别
茫茫人海一粒沙33 分钟前
vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理
人工智能·语言模型·自然语言处理
诗酒当趁年华34 分钟前
【NLP实践】二、自训练数据实现中文文本分类并提供RestfulAPI服务
人工智能·自然语言处理·分类
静心问道1 小时前
Idefics3:构建和更好地理解视觉-语言模型:洞察与未来方向
人工智能·多模态·ai技术应用
sheep88881 小时前
AI与区块链Web3技术融合:重塑数字经济的未来格局
人工智能·区块链