统计学习方法(第二版) 第七章 支持向量机 (第三节)

本节介绍非线性支持向量机与核函数,这部分还是比较难的数学功底需要比较深厚。

目录

前言

一、为什么映射到高维线性可分。

二、核技巧

三、正定核的充要条件

四、常用核函数

五、非线性支持向量机

总结


前言

对解线性可分问题,线性支持向量机是一种非常好的分类方法,但是在很多情况中都是线性不可分的,那么又该怎么处理呢?

数学家最常用的思想就是将问题转化成以被解决的问题,那对于非线性可分的问题,怎样转化成线性可分的问题呢?

这里就有一个重要结论:在低维一个线性不可分的数据集映射到高维线性可分的概率越大,如果映射到无穷维,可认为线性可分的概率为一,即一定能找到一个超平面使数据可分。

这就是非线性支持向量机与核函数的思想应用。

一、为什么映射到高维线性可分。

初始有A、B、C、D四个点,颜色代表分类,在一维的角度我们没法找到一个点使得两类点线性可分,但经过y = x^2的映射到二维空间,我们可以看到数据集线性可分了。一维映射到二维。

二维映射到三维。

二、核技巧

三、正定核的充要条件

这部分还是有看不懂,数学基础知识还是比较弱,只简单介绍少核函数需要满足什么条件。

这里用线性代数的知识很好证明,不多说。Gram矩阵就是内积矩阵,所以是对称矩阵。

四、常用核函数

五、非线性支持向量机


总结

主要介绍非线性支持向量机与核函数方法,为什么核技巧要用到原问题的对偶问题来求解呢?因为可以大幅度减少计算量。下一节介绍优化算法,呜呜真是太难了,坚持住!

相关推荐
聆风吟º1 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee3 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
你撅嘴真丑4 小时前
第九章-数字三角形
算法
聆风吟º4 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys4 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56784 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子4 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder4 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮4 小时前
AI 视觉连载1:像素
算法
智驱力人工智能5 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算