深度剖析:NLP 领域基于 TF-IDF 和 Text-Rank 的关键字提取原理

今天,我想写一篇自然语言处理领域两大关键词提取技术 TF-IDF 和 Text-Rank。这两项技术在文本处理的世界里犹如两颗璀璨的明星,各自散发着独特的光芒,帮助我们从海量的文本数据中精准地提炼出关键信息,无论是在学术研究、信息检索,还是商业智能分析等领域,都有着举足轻重的地位。

废话不多说,开始我们今天真题。

  1. 什么是关键字提取?

关键词提取是一个常见的需求,它从一段文本中提取出重要的词,这些词是对文章的一种粗略的摘要,可以帮助读者快速捕获文章的关键信息。如下图:

  1. 应用场景

个性化推荐: 通过对文章的关键词计算,结合用户画像,精准的对用户进行个性化推荐。

话题聚合: 根据文章计算的关键词,聚合相同关键词的文章,便于用户对同一话题的文章进行全方位的信息阅读。

文章搜索: 通过对文章关键词提取,完成搜索关键词与文章内容的精准匹配。

  1. 实现技术

无监督方法:TF-IDF、Text-Rrank

监督方法:多标签分类,序列标注问题

本次我主要讲解无监督方法。

完整文章链接: 深度剖析:NLP 领域基于 TF-IDF 和 Text-Rank 的关键字提取原理

相关推荐
张较瘦_1 分钟前
[论文阅读] 人工智能 + 软件工程 | 从“人工扒日志”到“AI自动诊断”:LogCoT框架的3大核心创新
论文阅读·人工智能·软件工程
lisw0514 分钟前
连接蓝牙时“无媒体信号”怎么办?
人工智能·机器学习·微服务
扫地的小何尚24 分钟前
深度解析 CUDA-QX 0.4 加速 QEC 与求解器库
人工智能·语言模型·llm·gpu·量子计算·nvidia·cuda
张较瘦_32 分钟前
[论文阅读] 人工智能 + 软件工程 | 35篇文献拆解!LLM如何重塑软件配置的生成、验证与运维
论文阅读·人工智能·软件工程
jie*1 小时前
小杰机器学习(nine)——支持向量机
人工智能·python·机器学习·支持向量机·回归·聚类·sklearn
山烛1 小时前
OpenCV:人脸检测,Haar 级联分类器原理
人工智能·opencv·计算机视觉·人脸检测·harr级联分类器
飞哥数智坊1 小时前
打造我的 AI 开发团队(二):bmad,开箱即用的敏捷开发智能体
人工智能·ai编程
nju_spy1 小时前
南京大学 - 复杂结构数据挖掘(一)
大数据·人工智能·机器学习·数据挖掘·数据清洗·南京大学·相似性分析
charieli-fh1 小时前
指令微调数据评估与影响:构建高质量大语言模型的关键
人工智能·深度学习·语言模型
Coovally AI模型快速验证1 小时前
从避障到实时建图:机器学习如何让无人机更智能、更安全、更实用(附微型机载演示示例)
人工智能·深度学习·神经网络·学习·安全·机器学习·无人机