深度剖析:NLP 领域基于 TF-IDF 和 Text-Rank 的关键字提取原理

今天,我想写一篇自然语言处理领域两大关键词提取技术 TF-IDF 和 Text-Rank。这两项技术在文本处理的世界里犹如两颗璀璨的明星,各自散发着独特的光芒,帮助我们从海量的文本数据中精准地提炼出关键信息,无论是在学术研究、信息检索,还是商业智能分析等领域,都有着举足轻重的地位。

废话不多说,开始我们今天真题。

  1. 什么是关键字提取?

关键词提取是一个常见的需求,它从一段文本中提取出重要的词,这些词是对文章的一种粗略的摘要,可以帮助读者快速捕获文章的关键信息。如下图:

  1. 应用场景

个性化推荐: 通过对文章的关键词计算,结合用户画像,精准的对用户进行个性化推荐。

话题聚合: 根据文章计算的关键词,聚合相同关键词的文章,便于用户对同一话题的文章进行全方位的信息阅读。

文章搜索: 通过对文章关键词提取,完成搜索关键词与文章内容的精准匹配。

  1. 实现技术

无监督方法:TF-IDF、Text-Rrank

监督方法:多标签分类,序列标注问题

本次我主要讲解无监督方法。

完整文章链接: 深度剖析:NLP 领域基于 TF-IDF 和 Text-Rank 的关键字提取原理

相关推荐
居然JuRan5 分钟前
阿里云多模态大模型岗三面面经
人工智能
THMAIL7 分钟前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
nju_spy8 分钟前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
中國龍在廣州35 分钟前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
东哥说-MES|从入门到精通36 分钟前
Mazak MTF 2025制造未来参观总结
大数据·网络·人工智能·制造·智能制造·数字化
CodeCraft Studio1 小时前
Aspose.Words for .NET 25.7:支持自建大语言模型(LLM),实现更安全灵活的AI文档处理功能
人工智能·ai·语言模型·llm·.net·智能文档处理·aspose.word
山烛1 小时前
深度学习:CNN 模型训练中的学习率调整(基于 PyTorch)
人工智能·pytorch·python·深度学习·cnn·调整学习率
THMAIL1 小时前
深度学习从入门到精通 - 神经网络核心原理:从生物神经元到数学模型蜕变
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归
七夜zippoe1 小时前
AI+Java 守护你的钱袋子!金融领域的智能风控与极速交易
java·人工智能·金融
seegaler1 小时前
AMD显卡运行GPT-OSS全攻略
gpt·ai·amd·gpt-oss