深度剖析:NLP 领域基于 TF-IDF 和 Text-Rank 的关键字提取原理

今天,我想写一篇自然语言处理领域两大关键词提取技术 TF-IDF 和 Text-Rank。这两项技术在文本处理的世界里犹如两颗璀璨的明星,各自散发着独特的光芒,帮助我们从海量的文本数据中精准地提炼出关键信息,无论是在学术研究、信息检索,还是商业智能分析等领域,都有着举足轻重的地位。

废话不多说,开始我们今天真题。

  1. 什么是关键字提取?

关键词提取是一个常见的需求,它从一段文本中提取出重要的词,这些词是对文章的一种粗略的摘要,可以帮助读者快速捕获文章的关键信息。如下图:

  1. 应用场景

个性化推荐: 通过对文章的关键词计算,结合用户画像,精准的对用户进行个性化推荐。

话题聚合: 根据文章计算的关键词,聚合相同关键词的文章,便于用户对同一话题的文章进行全方位的信息阅读。

文章搜索: 通过对文章关键词提取,完成搜索关键词与文章内容的精准匹配。

  1. 实现技术

无监督方法:TF-IDF、Text-Rrank

监督方法:多标签分类,序列标注问题

本次我主要讲解无监督方法。

完整文章链接: 深度剖析:NLP 领域基于 TF-IDF 和 Text-Rank 的关键字提取原理

相关推荐
nuise_1 分钟前
朴素贝叶斯法
人工智能·机器学习·概率论
ehiway19 分钟前
FPGA+GPU+CPU国产化人工智能平台
人工智能·fpga开发·硬件工程·国产化
天天爱吃肉821822 分钟前
碳化硅(SiC)功率器件:新能源汽车的“心脏”革命与技术突围
大数据·人工智能
萧鼎1 小时前
利用 OpenCV 进行棋盘检测与透视变换
人工智能·opencv·计算机视觉
神秘的土鸡1 小时前
使用Open WebUI下载的模型文件(Model)默认存放在哪里?
人工智能·llama·ollama·openwebui
梦里是谁N2 小时前
【deepseek之我问】如何把AI技术与教育相结合,适龄教育,九年义务教育,以及大学教育,更着重英语学习。如何结合,给出观点。结合最新智能体Deepseek
人工智能·学习
小白狮ww2 小时前
国产超强开源大语言模型 DeepSeek-R1-70B 一键部署教程
人工智能·深度学习·机器学习·语言模型·自然语言处理·开源·deepseek
风口猪炒股指标2 小时前
想象一个AI保姆机器人使用场景分析
人工智能·机器人·deepseek·深度思考
Blankspace空白2 小时前
【小白学AI系列】NLP 核心知识点(八)多头自注意力机制
人工智能·自然语言处理
Sodas(填坑中....)2 小时前
SVM对偶问题
人工智能·机器学习·支持向量机·数据挖掘