Computer Vision Arxiv Daily 2025.01.14

1. Image Processing

1-001 MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training

Image matching, which aims to identify corresponding pixel locations between images, is crucial in a wide range of scientific disciplines, aiding in image registration, fusion, and analysis. We propose a large-scale pre-training framework that utilizes synthetic cross-modal training signals, incorporating diverse data from various sources, to train models to recognize and match fundamental structures across images.

1-002 Zero-Shot Scene Understanding for Automatic Target Recognition Using Large Vision-Language Models

Automatic target recognition (ATR) plays a critical role in tasks such as navigation and surveillance, where safety and accuracy are paramount. we propose a novel pipeline that combines the detection capabilities of open-world detectors with the recognition confidence of LVLMs, creating a robust system for zero-shot ATR of novel classes and unknown domains.

1-003 Enhancing Image Generation Fidelity via Progressive Prompts

we propose a coarse - to - fine generation pipeline for regional prompt - following generation. Specifically, we first utilize the powerful large language model (LLM) to generate both high - level descriptions of the image (such as content, topic, and objects) and low - level descriptions (such as details and style). Then, we explore the influence of cross - attention layers at different depths. We find that deeper layers are always responsible for high - level content control, while shallow layers handle low - level content control.

1-004 Personalized Preference Fine-tuning of Diffusion Models

We introduce PPD, a multi-reward optimization objective that aligns diffusion models with personalized preferences. With PPD, a diffusion model learns the individual preferences of a population of users in a few-shot way, enabling generalization to unseen users.

1-005 Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution

We overcome these challenges by developing two novel techniques. Firstly, to generalize GS for ASR, we elaborately design an architecture to predict the corresponding image-conditioned Gaussians of the input low-resolution image in a feed-forward manner. Secondly, we implement an efficient differentiable 2D GPU/CUDA-based scale-aware rasterization to render super-resolved images by sampling discrete RGB values from the predicted contiguous Gaussians.

2. Video Processing

2-001 Training-Free Motion-Guided Video Generation with Enhanced Temporal Consistency Using Motion Consistency Loss

In this paper, we address the challenge of generating temporally consistent videos with motion guidance. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video.

2-002 SST-EM: Advanced Metrics for Evaluating Semantic, Spatial and Temporal Aspects in Video Editing

Video editing models have advanced significantly, but evaluating their performance remains challenging. We present SST-EM (Semantic, Spatial, and Temporal Evaluation Metric), a novel evaluation framework that leverages modern Vision-Language Models (VLMs), Object Detection, and Temporal Consistency checks.

2-003 IP-FaceDiff: Identity-Preserving Facial Video Editing with Diffusion

Facial video editing has become increasingly important for content creators, enabling the manipulation of facial expressions and attributes. To address these challenges, we propose a novel facial video editing framework that leverages the rich latent space of pre-trained text-to-image (T2I) diffusion models and fine-tune them specifically for facial video editing tasks.

3. 3D Processing

3-001 RMAvatar: Photorealistic Human Avatar Reconstruction from Monocular Video Based on Rectified Mesh-embedded Gaussians

We introduce RMAvatar, a novel human avatar representation with Gaussian splatting embedded on mesh to learn clothed avatar from a monocular video.

3-002 3DGS-to-PC: Convert a 3D Gaussian Splatting Scene into a Dense Point Cloud or Mesh

In this work we introduce 3DGS-to-PC, a flexible and highly customisable framework that is capable of transforming 3DGS scenes into dense, high-accuracy point clouds.

4. LLM & VLM

4-001 Imagine while Reasoning in Space: Multimodal Visualization-of-Thought

Chain-of-Thought (CoT) prompting has proven highly effective for enhancing complex reasoning in Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Yet, it struggles in complex spatial reasoning tasks. Nonetheless, human cognition extends beyond language alone, enabling the remarkable capability to think in both words and images. Inspired by this mechanism, we propose a new reasoning paradigm, Multimodal Visualization-of-Thought (MVoT). It enables visual thinking in MLLMs by generating image visualizations of their reasoning traces.

5. Embodied AI

6. datasets

6-001 UnCommon Objects in 3D

We introduce Uncommon Objects in 3D (uCO3D), a new object-centric dataset for 3D deep learning and 3D generative AI. uCO3D is the largest publicly-available collection of high-resolution videos of objects with 3D annotations that ensures full-360∘ coverage

6-002 OCORD: Open-Campus Object Removal Dataset

this paper introduces a novel approach to object removal by constructing a high-resolution real-world dataset through long-duration video capture with fixed camera settings.

7. Survey

7-001 The Quest for Visual Understanding: A Journey Through the Evolution of Visual Question Answering

Visual Question Answering (VQA) is an interdisciplinary field that bridges the gap between computer vision (CV) and natural language processing(NLP), enabling Artificial Intelligence(AI) systems to answer questions about images. This survey traces the journey of VQA from its early days, through major breakthroughs, such as attention mechanisms, compositional reasoning, and the rise of vision-language pre-training methods.

相关推荐
硬件学长森哥2 小时前
Android影像基础--cameraAPI2核心流程
android·计算机视觉
昨日之日20063 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
深圳市快瞳科技有限公司3 小时前
小场景大市场:猫狗识别算法在宠物智能设备中的应用
算法·计算机视觉·宠物
SEO_juper5 小时前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号6 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha6 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云6 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊6 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint6 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
AndrewHZ6 小时前
【图像处理基石】图像在频域处理和增强时,如何避免频谱混叠?
图像处理·计算机视觉·傅里叶分析·图像增强·频域处理·摩尔纹·频谱混叠