【自动驾驶BEV感知之Transformer】

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

本文为深蓝学院《BEV感知理论与实践》 的学习笔记

  • 以图书馆看书举例

  • query:查询,感兴趣的东西

  • Key:索引,书的名字、目录

  • Value:值,书的详细内容

  • Transformer可以看作我们有自己感兴趣的方向,然后去图书馆里找,怎么找呢,肯定是看书的名字,翻一下目录来确定和你的兴趣是否匹配,如果匹配就翻开书挑里面感兴趣的东西进行学习

  • Attention也就是注意力是query和Key的点积,代表两者之间的相似度,相似肯定需要更加关注,然后通过Attention乘value也能更新value从而提取出value中更重要的内容

  • 以Hi how are you 为例子,对这四个词进行编码,每个都得到一个256维的向量,可以理解为在256个维度对这个词的一些描述来表征这个词

  • 然后他们分别对应的QKV通过同一批权重矩阵相乘得到

  • 然后以Hi为例,他的query和别人的key点积得到Attention,再乘上别人的value得到在自己的value基础上可以更新的内容,然后Hi要和其他三个以及他自己都做这个操作

  • 互相之间的QKV操作其实本质上是学习了更好的全局特征,通过别人来丰富自己

  • 输入输出都是256维的向量,内部其实在相互之间学习,也称为self-Attention

  • self-Attention的本质是来自同一组embedding

  • 这是矩阵的形式,核心就是得到了一个Attention矩阵

  • 然后通过缩放更稳定,以及一个softmax得到了概率矩阵

  • self-Attention的目的是学习全局信息,找到自己的ID

  • multi-head:每个头独立关注输入的不同子空间,有助于学习多样化的特征,但维持整体输出维度不变

  1. encoder和decoder如何交互

    1. Query:来自 Decoder 当前时间步的隐藏状态。

    2. Key 和 Value:来自 Encoder 的输出表示

  2. 三种Attention

    1. encoder:自注意力机制

    2. decoder:Masked 自注意力(屏蔽未来的词,确保自回归) → Encoder-Decoder 注意力

  3. Padding mask

    1. 用于忽略填充位置,确保它们不影响注意力权重和损失计算

    2. 设置为负无穷的score使得softmax的概率为0

相关推荐
DARLING Zero two♡1 分钟前
浏览器里跑 AI 语音转写?Whisper Web + cpolar让本地服务跑遍全网
前端·人工智能·whisper
袁庭新7 分钟前
2025年11月总结
人工智能·aigc
代码输入中...9 分钟前
大模型项目实战:多领域智能应用开发
人工智能·机器学习·ai编程
科普瑞传感仪器18 分钟前
告别“盲打磨”:六维力传感器如何通过选型实现真正的机器人恒力控制?
人工智能·科技·ai·机器人·无人机
银空飞羽34 分钟前
让Trae SOLO全自主学习开发近期爆出的React RCE漏洞靶场并自主利用验证(CVE-2025-55182)
前端·人工智能·安全
图欧学习资源库34 分钟前
人工智能领域、图欧科技、IMYAI智能助手2025年10月更新月报
人工智能·科技
TextIn智能文档云平台44 分钟前
怎么批量将扫描件变成文档?
人工智能·机器学习
paopao_wu1 小时前
ComfyUI遇上Z-Image(1):环境部署与AI图像生成快速体验
人工智能·ai·大模型·comfyui·z-image
大江东去浪淘尽千古风流人物1 小时前
【DSP】向量化操作的误差来源分析及其经典解决方案
linux·运维·人工智能·算法·vr·dsp开发·mr
陀螺财经1 小时前
加密热潮“席卷”美国军界
大数据·人工智能·区块链