【自动驾驶BEV感知之Transformer】

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

本文为深蓝学院《BEV感知理论与实践》 的学习笔记

  • 以图书馆看书举例

  • query:查询,感兴趣的东西

  • Key:索引,书的名字、目录

  • Value:值,书的详细内容

  • Transformer可以看作我们有自己感兴趣的方向,然后去图书馆里找,怎么找呢,肯定是看书的名字,翻一下目录来确定和你的兴趣是否匹配,如果匹配就翻开书挑里面感兴趣的东西进行学习

  • Attention也就是注意力是query和Key的点积,代表两者之间的相似度,相似肯定需要更加关注,然后通过Attention乘value也能更新value从而提取出value中更重要的内容

  • 以Hi how are you 为例子,对这四个词进行编码,每个都得到一个256维的向量,可以理解为在256个维度对这个词的一些描述来表征这个词

  • 然后他们分别对应的QKV通过同一批权重矩阵相乘得到

  • 然后以Hi为例,他的query和别人的key点积得到Attention,再乘上别人的value得到在自己的value基础上可以更新的内容,然后Hi要和其他三个以及他自己都做这个操作

  • 互相之间的QKV操作其实本质上是学习了更好的全局特征,通过别人来丰富自己

  • 输入输出都是256维的向量,内部其实在相互之间学习,也称为self-Attention

  • self-Attention的本质是来自同一组embedding

  • 这是矩阵的形式,核心就是得到了一个Attention矩阵

  • 然后通过缩放更稳定,以及一个softmax得到了概率矩阵

  • self-Attention的目的是学习全局信息,找到自己的ID

  • multi-head:每个头独立关注输入的不同子空间,有助于学习多样化的特征,但维持整体输出维度不变

  1. encoder和decoder如何交互

    1. Query:来自 Decoder 当前时间步的隐藏状态。

    2. Key 和 Value:来自 Encoder 的输出表示

  2. 三种Attention

    1. encoder:自注意力机制

    2. decoder:Masked 自注意力(屏蔽未来的词,确保自回归) → Encoder-Decoder 注意力

  3. Padding mask

    1. 用于忽略填充位置,确保它们不影响注意力权重和损失计算

    2. 设置为负无穷的score使得softmax的概率为0

相关推荐
Tech Synapse7 分钟前
人脸识别考勤系统实现教程:基于Face-Recognition、OpenCV与SQLite
人工智能·opencv·sqlite
硅谷秋水28 分钟前
CoT-Drive:利用 LLM 和思维链提示实现自动驾驶的高效运动预测
人工智能·机器学习·语言模型·自动驾驶
界面开发小八哥34 分钟前
Java开发工具IntelliJ IDEA v2025.1——全面支持Java 24、整合AI
java·ide·人工智能·intellij-idea·idea
IT古董1 小时前
【漫话机器学习系列】214.停用词(Stop Words)
人工智能·机器学习
zz9381 小时前
Trae 04.22重磅更新:AI 编程领域的革新者
人工智能
爱编程的鱼1 小时前
C# 结构(Struct)
开发语言·人工智能·算法·c#
2301_769624401 小时前
基于Pytorch的深度学习-第二章
人工智能·pytorch·深度学习
咨询187150651271 小时前
高企复审奖补!2025年合肥市高新技术企业重新认定奖励补贴政策及申报条件
大数据·人工智能·区块链
Guheyunyi2 小时前
智能照明系统:照亮智慧生活的多重价值
大数据·前端·人工智能·物联网·信息可视化·生活
云天徽上2 小时前
【数据可视化-27】全球网络安全威胁数据可视化分析(2015-2024)
人工智能·安全·web安全·机器学习·信息可视化·数据分析