【自动驾驶BEV感知之Transformer】

欢迎大家关注我的B站:

偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com)

本文为深蓝学院《BEV感知理论与实践》 的学习笔记

  • 以图书馆看书举例

  • query:查询,感兴趣的东西

  • Key:索引,书的名字、目录

  • Value:值,书的详细内容

  • Transformer可以看作我们有自己感兴趣的方向,然后去图书馆里找,怎么找呢,肯定是看书的名字,翻一下目录来确定和你的兴趣是否匹配,如果匹配就翻开书挑里面感兴趣的东西进行学习

  • Attention也就是注意力是query和Key的点积,代表两者之间的相似度,相似肯定需要更加关注,然后通过Attention乘value也能更新value从而提取出value中更重要的内容

  • 以Hi how are you 为例子,对这四个词进行编码,每个都得到一个256维的向量,可以理解为在256个维度对这个词的一些描述来表征这个词

  • 然后他们分别对应的QKV通过同一批权重矩阵相乘得到

  • 然后以Hi为例,他的query和别人的key点积得到Attention,再乘上别人的value得到在自己的value基础上可以更新的内容,然后Hi要和其他三个以及他自己都做这个操作

  • 互相之间的QKV操作其实本质上是学习了更好的全局特征,通过别人来丰富自己

  • 输入输出都是256维的向量,内部其实在相互之间学习,也称为self-Attention

  • self-Attention的本质是来自同一组embedding

  • 这是矩阵的形式,核心就是得到了一个Attention矩阵

  • 然后通过缩放更稳定,以及一个softmax得到了概率矩阵

  • self-Attention的目的是学习全局信息,找到自己的ID

  • multi-head:每个头独立关注输入的不同子空间,有助于学习多样化的特征,但维持整体输出维度不变

  1. encoder和decoder如何交互

    1. Query:来自 Decoder 当前时间步的隐藏状态。

    2. Key 和 Value:来自 Encoder 的输出表示

  2. 三种Attention

    1. encoder:自注意力机制

    2. decoder:Masked 自注意力(屏蔽未来的词,确保自回归) → Encoder-Decoder 注意力

  3. Padding mask

    1. 用于忽略填充位置,确保它们不影响注意力权重和损失计算

    2. 设置为负无穷的score使得softmax的概率为0

相关推荐
AIGC大时代7 分钟前
数据分析如何正确使用ChatGPT进行辅助?
大数据·人工智能·深度学习·chatgpt·数据挖掘·数据分析·aigc
懒麻蛇12 分钟前
ChatGPT Task功能初探
人工智能·chatgpt
程亦寻17 分钟前
物联网与前沿技术融合分析
人工智能·物联网·区块链·量子计算
正在走向自律38 分钟前
当AI Agent遇上CRM:客户关系管理的智能化变革(29/30)
人工智能·crm系统·ai agent·ai智能体
滴滴哒哒答答1 小时前
《自动驾驶与机器人中的SLAM技术》ch8:基于预积分和图优化的紧耦合 LIO 系统
人工智能·机器人·自动驾驶
从零开始学习人工智能1 小时前
傅里叶变换在语音识别中的关键作用
人工智能·语音识别
Landy_Jay2 小时前
深度学习:大模型Decoding+MindSpore NLP分布式推理详解
人工智能·深度学习
一点一木3 小时前
从零开始:使用 Brain.js 创建你的第一个神经网络(一)
前端·javascript·人工智能
cooldream20093 小时前
数据可视化:让数据讲故事的艺术
人工智能·知识图谱
paixiaoxin3 小时前
解读CVPR2024-3DGS论文分享|DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with .....
人工智能·深度学习·算法·机器学习·3d·cvpr·3dgs