OpenCV相机标定与3D重建(63)校正图像的畸变函数undistort()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

转换图像以补偿镜头畸变。

该函数通过变换图像来补偿径向和切向镜头畸变。

此函数仅仅是 initUndistortRectifyMap(使用单位矩阵 R)和 remap(使用双线性插值)的组合。有关执行的具体变换详情,请参阅前者函数。

对于在源图像中没有对应像素的目的图像中的像素,将用零(黑色)填充。

可以通过 newCameraMatrix 来调节源图像中哪些特定子集将在校正后的图像中可见。你可以使用 getOptimalNewCameraMatrix 来根据你的需求计算适当的 newCameraMatrix。

相机矩阵和畸变参数可以使用 calibrateCamera 确定。如果图像的分辨率与标定阶段使用的分辨率不同,则需要相应地缩放 fx, fy, cx 和 cy,而畸变系数保持不变。

cv::undistort 是 OpenCV 库中的一个函数,用于校正图像的畸变。它根据提供的相机内参矩阵 (cameraMatrix) 和畸变系数 (distCoeffs) 来移除图像中的径向和切向畸变。如果提供了新的相机矩阵 (newCameraMatrix),则还可以对图像进行重新映射以适应不同的视角或裁剪区域。

函数原型

cpp 复制代码
void cv::undistort	
(
	InputArray 	src,
	OutputArray 	dst,
	InputArray 	cameraMatrix,
	InputArray 	distCoeffs,
	InputArray 	newCameraMatrix = noArray() 
)		

参数

src:输入(畸变)图像。

dst:输出(校正)图像,该图像具有与 src 相同的尺寸和类型。

cameraMatrix:输入相机矩阵 A = [ f x 0 c x 0 f y c y 0 0 1 ] A = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} A= fx000fy0cxcy1

distCoeffs:输入的畸变系数向量,包含 4、5、8、12 或 14 个元素,具体为 (k1, k2, p1, p2 [,k3 [,k4, k5, k6 [,s1, s2, s3, s4 [,τx, τy]]]])。如果该向量为 NULL 或空,则假定畸变系数为零。

newCameraMatrix:畸变图像的相机矩阵。默认情况下,它与 cameraMatrix 相同,但你可以通过使用不同的矩阵来额外缩放和平移结果。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

void addRadialDistortion( const Mat& src, Mat& dst, double k1 = 0.001 )
{
    Mat map_x( src.size(), CV_32FC1 );
    Mat map_y( src.size(), CV_32FC1 );

    // 获取中心点
    Point2f center( src.cols / 2.0, src.rows / 2.0 );

    for ( int y = 0; y < src.rows; ++y )
    {
        for ( int x = 0; x < src.cols; ++x )
        {
            // 计算从中心点的距离
            float dx = x - center.x;
            float dy = y - center.y;
            float r2 = dx * dx + dy * dy;

            // 应用径向畸变公式
            float factor              = 1 + k1 * r2;
            map_x.at< float >( y, x ) = factor * dx + center.x;
            map_y.at< float >( y, x ) = factor * dy + center.y;
        }
    }

    // 应用映射
    remap( src, dst, map_x, map_y, INTER_LINEAR );
}

int main()
{
    // 读取原始图像(确保路径正确)
    Mat src = imread( "/media/dingxin/data/projects/ir/bin/shape.png" );
    if ( src.empty() )
    {
        cerr << "Error: Could not open or find the image!" << endl;
        return -1;
    }

    // 创建带有人工畸变的图像
    Mat distorted;
    addRadialDistortion( src, distorted, 0.002 );  // 调整k1值来控制畸变强度

    // 显示结果
    imshow( "Original Image", src );
    imshow( "Artificially Distorted Image", distorted );

    waitKey( 0 );  // 等待按键关闭窗口

    // 保存畸变图像以便后续使用
    imwrite( "distorted_image.png", distorted );

    return 0;
}

运行结果

`

相关推荐
网络改变中国2 分钟前
【2D/3D户型图编辑器实现-技术栈选择】附demo演示
3d·编辑器·户型图编辑器·户型图识别·户型图画板·墙体绘制
苏州知芯传感1 小时前
赋能机器人精“准”触觉:MEMS 3D视觉在动态抓取与焊缝跟踪中的破局
3d·机器人
DogDaoDao2 小时前
OpenCV音视频编解码器详解
人工智能·opencv·音视频·视频编解码·h264·h265·音视频编解码
sponge'5 小时前
opencv学习笔记8:haar特征、决策树、adaboost初步认识
笔记·opencv·学习
友思特 智能感知7 小时前
友思特应用 | 基于高精度双目散斑 3D 相机的放射治疗视觉定位应用
3d·机器视觉·3d相机·医疗设备·医疗定位
Mrliu__15 小时前
Opencv(六) : 颜色识别
人工智能·opencv·计算机视觉
武子康17 小时前
AI研究-117 特斯拉 FSD 视觉解析:多摄像头 - 3D占用网络 - 车机渲染,盲区与低速复杂路况安全指南
人工智能·科技·计算机视觉·3d·视觉检测·特斯拉·model y
AndrewHZ17 小时前
【图像处理基石】如何在图像中实现光晕的星芒效果?
图像处理·opencv·计算机视觉·cv·图像增强·算法入门·星芒效果
乐吾乐科技21 小时前
乐吾乐3D可视化案例【智慧汽车三维可视化】
3d·汽车
夕阳染色的坡道1 天前
LineSlam线特征投影融合(Fuse) 中pML->GetLineNormalVector()的理解代码理解
人工智能·opencv·计算机视觉