利用MetaNeighbor验证重复性和跨物种分群

进行跨物种研究时,我们经常需要进行注释结果的比较和归类,或者同一物种不同样本之间的注释验证。R语言中有一个包就可以利用直观的热图展示这一需求。

导入包和环境

R 复制代码
library(Seurat)
library(ggplot2)
library(MetaNeighbor)
library(SingleCellExperiment)
library(dplyr)

导入数据

这里以海豚和两个公开人的PFC脑区单细胞转录组数据为例

R 复制代码
hm <- readRDS('human_sci_EXN.rds')
DefaultAssay(hm) <- 'RNA'
hm@meta.data$species <- 'human'
hm2 <- readRDS('human_2_EXN.rds')
DefaultAssay(hm2) <- 'RNA'
hm2@meta.data$species <- 'human'
dp <- readRDS('dolphin_PFC_EXN.rds')
DefaultAssay(dp) <- 'RNA'
dp@meta.data$species <- 'dolphin'

创建比较对象

R 复制代码
# 确保Idents已经正确设置
Idents(hm) <- hm@meta.data$cellType_layer
Idents(hm2) <- hm2@meta.data$subclass.v2
Idents(dp) <- dp@meta.data$sub2

# 提取表达矩阵和元数据
exprs_hm <- GetAssayData(hm)
exprs_hm2 <- GetAssayData(hm2)
exprs_dp <- GetAssayData(dp)

meta_hm <- hm@meta.data
meta_hm2 <- hm2@meta.data
meta_dp <- dp@meta.data

# 提取共有基因
common_genes <- Reduce(intersect, list(rownames(exprs_hm),rownames(exprs_hm2), rownames(exprs_dp)))

# 提取共有基因表达矩阵
exprs_hm_common <- exprs_hm[common_genes, ]
exprs_hm2_common <- exprs_hm2[common_genes, ]
exprs_dp_common <- exprs_dp[common_genes, ]

# 合并表达矩阵
combined_exprs <- cbind(exprs_hm_common, exprs_hm2_common, exprs_dp_common)

# 创建一个新的列数据框,确保使用Idents作为cell_type
new_colData <- data.frame(
  study_id = c(rep('human', ncol(exprs_hm_common)),rep('human2', ncol(exprs_hm2_common)), rep('dolphin', ncol(exprs_dp_common))),
  cell_type = c(Idents(hm), Idents(hm2), Idents(dp))
)

# 创建 SingleCellExperiment 对象
sce_combined <- SingleCellExperiment(assays = list(RNA = combined_exprs), colData = new_colData)

# 检查合并后的对象
sce_combined

检查所有细胞分群比例

R 复制代码
table(sce_combined$cell_type)

相似性分析

R 复制代码
# 选择高可变基因
var_genes <- variableGenes(dat = sce_combined, exp_labels = sce_combined$study_id)

# 运行相似性分析
celltype_NV <- MetaNeighborUS(var_genes = var_genes,
                              dat = sce_combined,
                              study_id = sce_combined$study_id,
                              cell_type = sce_combined$cell_type,
                              fast_version = TRUE)
# 检查前几行
head(celltype_NV)

可视化

R 复制代码
png("heatmap_integrated_3.png", width = 24, height = 24, units = "in", res = 300) 
plotHeatmapPretrained(aurocs = celltype_NV, cex = 1.5, margins = c(25, 25))
dev.off()
相关推荐
余~~185381628001 小时前
矩阵碰一碰发视频的后端源码技术,支持OEM
线性代数·矩阵·音视频
CoderCodingNo2 小时前
【GESP】C++二级真题 luogu-b3924, [GESP202312 二级] 小杨的H字矩阵
java·c++·矩阵
@ V:ZwaitY092 小时前
如何打造TikTok矩阵:多账号管理与内容引流的高效策略
人工智能·矩阵·tiktok
_Itachi__2 小时前
LeetCode 热题 100 73. 矩阵置零
算法·leetcode·矩阵
01_3 小时前
力扣hot100 ——搜索二维矩阵 || m+n复杂度优化解法
算法·leetcode·矩阵
Biomamba生信基地15 小时前
两天入门R语言,周末开讲
开发语言·r语言·生信
qwy71522925816315 小时前
13-R数据重塑
服务器·数据库·r语言
Bio Coder15 小时前
R语言安装生物信息数据库包
开发语言·数据库·r语言
Tiger Z15 小时前
R 语言科研绘图第 27 期 --- 密度图-分组
开发语言·程序人生·r语言·贴图
白水先森18 小时前
ArcGIS Pro制作人口三维地图教程
arcgis·信息可视化·数据分析