机器学习-分类算法评估标准

一. 准确率 accuracy

将预测结果和测试集的目标值比较,计算预测正确的百分比

准确率越高说明模型效果越好

python 复制代码
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
#加载鸢尾花数据
X,y = datasets.load_iris(return_X_y = True)
#训练集 测试集划分
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
# 创建KNN分类器对象 近邻数为6
knn_clf = KNeighborsClassifier(n_neighbors=6)
#训练集训练模型
knn_clf.fit(X_train,y_train)
#使用训练好的模型进行预测
y_predict = knn_clf.predict(X_test)

计算准确率:

python 复制代码
sum(y_predict == y_test) / len(y_test)

0.9333333333333333
sklearn.metrics包中的accuracy_score方法: 传入预测结果和测试集的标签, 返回预测准去率

python 复制代码
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_predict)

0.9333333333333333
分类模型对象的 score 方法:传入测试集特征值,测试集目标值

python 复制代码
knn_clf.score(X_test, y_test)

0.9333333333333333

相关推荐
Victory_orsh26 分钟前
“自然搞懂”深度学习系列(基于Pytorch架构)——02小试牛刀
人工智能·python·深度学习·神经网络·机器学习
tzc_fly29 分钟前
DeepSeek-OCR:上下文光学压缩
人工智能·计算机视觉·ocr
37手游后端团队31 分钟前
构建AI会话质检平台:技术架构与实践分享
人工智能·后端
哔哩哔哩技术39 分钟前
B站游戏大模型翻译实践 —— 我们如何用LLM撑起全年百万字本地化翻译任务
人工智能
longgyy40 分钟前
AI 开发告别 “孤岛”:MCP + 火山引擎
人工智能·火山引擎
珊瑚礁的猪猪侠42 分钟前
正则表达式入门到精通教程(Linux实操版)
linux·人工智能·正则表达式
星空的资源小屋42 分钟前
MkFont,一款开源免费的字体设计工具
网络·人工智能·pdf·电脑
mir frog1 小时前
DAY44 PYTHON 预训练模型
人工智能·深度学习·机器学习
yuzhuanhei1 小时前
机器学习算法常用算法
人工智能·算法·机器学习
2401_841495641 小时前
自然语言处理实战——英法机器翻译
人工智能·pytorch·python·深度学习·自然语言处理·transformer·机器翻译