【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测

一、KNN算法概念

K最近邻(K-Nearest Neighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。

二、对鸢尾花数据集进行预测

1、代码示例:

复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
# 提取特征
X = iris.data
# 提取标签
y = iris.target

# 将数据集划分为训练集和测试集,测试集占比20%
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建KNN分类器,设置K值为3
knn = KNeighborsClassifier(n_neighbors=3)

# 使用训练集对KNN分类器进行训练
knn.fit(X_train, y_train)

# 使用训练好的模型对测试集进行预测
y_pred = knn.predict(X_test)

# 计算预测准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"鸢尾花数据集预测准确率: {accuracy}")

2、代码解释

①借助load_iris()函数加载鸢尾花数据集。

②把数据集拆分为特征X和标签y

③运用train_test_split()函数将数据集按 80% 训练集、20% 测试集的比例划分。

④四创建KNeighborsClassifier对象,设定n_neighbors为 3,也就是 K 值为 3。

⑤利用fit()方法对模型进行训练。

⑥使用predict()方法对测试集进行预测。

⑦最后通过accuracy_score()函数算出预测准确率。

三、对自定义数据集进行预测

1、代码示例

复制代码
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 自定义数据集
# 特征矩阵
X = np.array([[1, 2], [2, 3], [3, 1], [4, 2], [5, 3], [6, 1]])
# 标签向量
y = np.array([0, 0, 0, 1, 1, 1])

# 将数据集划分为训练集和测试集,测试集占比20%
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建KNN分类器,设置K值为3
knn = KNeighborsClassifier(n_neighbors=3)

# 使用训练集对KNN分类器进行训练
knn.fit(X_train, y_train)

# 使用训练好的模型对测试集进行预测
y_pred = knn.predict(X_test)

# 计算预测准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"自定义数据集预测准确率: {accuracy}")

2、代码解释

①手动构建自定义的特征矩阵X和标签向量y

②同样使用train_test_split()函数把数据集划分为训练集和测试集。

③创建KNeighborsClassifier对象并设定 K 值。

④用fit()方法训练模型。

⑤利用predict()方法预测测试集。

⑥最后用accuracy_score()函数计算预测准确率。

可以根据实际需求调整 K 值以及数据集,以此来观察预测结果的变化。

相关推荐
kk哥889934 分钟前
从数据分析到深度学习!Anaconda3 2025 全流程开发平台,安装步骤
人工智能
LFly_ice39 分钟前
学习React-24-路由传参
前端·学习·react.js
陈天伟教授2 小时前
基于学习的人工智能(3)机器学习基本框架
人工智能·学习·机器学习·知识图谱
毕设源码-钟学长2 小时前
【开题答辩全过程】以 高校课程学习评价系统设计与实现为例,包含答辩的问题和答案
学习
搞科研的小刘选手3 小时前
【厦门大学主办】第六届计算机科学与管理科技国际学术会议(ICCSMT 2025)
人工智能·科技·计算机网络·计算机·云计算·学术会议
fanstuck3 小时前
深入解析 PyPTO Operator:以 DeepSeek‑V3.2‑Exp 模型为例的实战指南
人工智能·语言模型·aigc·gpu算力
萤丰信息3 小时前
智慧园区能源革命:从“耗电黑洞”到零碳样本的蜕变
java·大数据·人工智能·科技·安全·能源·智慧园区
世洋Blog3 小时前
更好的利用ChatGPT进行项目的开发
人工智能·unity·chatgpt
fruge4 小时前
从第三方库中偷师:学习 Lodash 的函数封装技巧
学习