【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测

一、KNN算法概念

K最近邻(K-Nearest Neighbor,KNN)分类算法是数据挖掘分类技术中最简单的方法之一,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位。它是一个理论上比较成熟的方法。既是最简单的机器学习算法之一,也是基于实例的学习方法中最基本的,又是最好的文本分类算法之一。

二、对鸢尾花数据集进行预测

1、代码示例:

复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = load_iris()
# 提取特征
X = iris.data
# 提取标签
y = iris.target

# 将数据集划分为训练集和测试集,测试集占比20%
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建KNN分类器,设置K值为3
knn = KNeighborsClassifier(n_neighbors=3)

# 使用训练集对KNN分类器进行训练
knn.fit(X_train, y_train)

# 使用训练好的模型对测试集进行预测
y_pred = knn.predict(X_test)

# 计算预测准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"鸢尾花数据集预测准确率: {accuracy}")

2、代码解释

①借助load_iris()函数加载鸢尾花数据集。

②把数据集拆分为特征X和标签y

③运用train_test_split()函数将数据集按 80% 训练集、20% 测试集的比例划分。

④四创建KNeighborsClassifier对象,设定n_neighbors为 3,也就是 K 值为 3。

⑤利用fit()方法对模型进行训练。

⑥使用predict()方法对测试集进行预测。

⑦最后通过accuracy_score()函数算出预测准确率。

三、对自定义数据集进行预测

1、代码示例

复制代码
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 自定义数据集
# 特征矩阵
X = np.array([[1, 2], [2, 3], [3, 1], [4, 2], [5, 3], [6, 1]])
# 标签向量
y = np.array([0, 0, 0, 1, 1, 1])

# 将数据集划分为训练集和测试集,测试集占比20%
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建KNN分类器,设置K值为3
knn = KNeighborsClassifier(n_neighbors=3)

# 使用训练集对KNN分类器进行训练
knn.fit(X_train, y_train)

# 使用训练好的模型对测试集进行预测
y_pred = knn.predict(X_test)

# 计算预测准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"自定义数据集预测准确率: {accuracy}")

2、代码解释

①手动构建自定义的特征矩阵X和标签向量y

②同样使用train_test_split()函数把数据集划分为训练集和测试集。

③创建KNeighborsClassifier对象并设定 K 值。

④用fit()方法训练模型。

⑤利用predict()方法预测测试集。

⑥最后用accuracy_score()函数计算预测准确率。

可以根据实际需求调整 K 值以及数据集,以此来观察预测结果的变化。

相关推荐
future14121 分钟前
游戏开发日记
数据结构·学习·c#
whabc10012 分钟前
和鲸社区深度学习基础训练营2025年关卡3_Q1(1)
人工智能·深度学习
勤奋的知更鸟17 分钟前
标准化模型格式ONNX介绍:打通AI模型从训练到部署的环节
人工智能·语言模型
presenttttt30 分钟前
用Python和OpenCV从零搭建一个完整的双目视觉系统(六 最终篇)
开发语言·python·opencv·计算机视觉
hie9889436 分钟前
采用最小二乘支持向量机(LSSVM)模型预测气象
算法·机器学习·支持向量机
盼小辉丶38 分钟前
Transoformer实战——Transformer模型性能评估
人工智能·深度学习·transformer
极限实验室1 小时前
Coco AI 实战(二):摄入MongoDB 数据
人工智能·mongodb
AIGC包拥它1 小时前
AI教学设计助手:生成好教案的Prompt技术实战(一)
人工智能·prompt
棱镜研途1 小时前
学习笔记丨卷积神经网络(CNN):原理剖析与多领域Github应用
图像处理·笔记·学习·计算机视觉·cnn·卷积神经网络·信号处理
测试19982 小时前
软件测试之压力测试总结
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·压力测试