学技术学英文:elasticsearch 的数据类型

Introduction

Elasticsearch, a highly scalable open-source full-text search and analytics engine, is known for its flexibility and diverse functionality. One of the key aspects that contribute to its versatility is the wide range of data types it supports. This article will delve into the intricacies of Elasticsearch data types, providing a comprehensive understanding of their usage and benefits. If you want to learn about Elasticsearch object fields VS. nested field types, check out this guide.

Core Data Types

Elasticsearch supports a variety of core data types, each designed to handle specific kinds of data.

Text and Keyword

Text data types are designed for full-text search. They are analyzed, meaning they are broken down into separate words (or tokens) during indexing. This makes them ideal for running full-text queries.

On the other hand, keyword data types are used for exact value searches. They are not analyzed and are used as they are. This makes them suitable for sorting, aggregating, or filtering.

Example:

json

{

"properties": {

"name": { "type": "text" },

"tag": { "type": "keyword" }

}

}

Numeric

Elasticsearch supports five numeric data types: long, unsigned_long, integer, short, and byte. These are used for whole numbers of varying sizes. For decimal numbers, it provides four data types: double,float, half_float and scaled_float.

Example:

json

{

"properties": {

"age": { "type": "integer" },

"height": { "type": "double" }

}

}

Date

The date and date_nanos data types are used for dates and times. Elasticsearch can handle date values in many different formats, making it highly flexible for time-based data. The date_nanos data type stores dates with nanoseconds precision from 1970 to 2262.

Example:

json

{

"properties": {

"timestamp": { "type": "date" },

"timestamp_ns": { "type": "date_nanos" }

}

}

Boolean

The boolean data type is used for true/false values.

Example:

json

{

"properties": {

"is_active": { "type": "boolean" }

}

}

Complex Data Types

Elasticsearch also supports complex data types for handling more sophisticated data structures.

Object

The object data type is used for JSON objects. It allows for nested fields within a document.

Example:

json

{

"properties": {

"user": {

"type": "object",

"properties": {

"name": { "type": "text" },

"age": { "type": "integer" }

}

}

}

}

Array

Elasticsearch can handle arrays of any data type. There is no special array data type; any field can contain zero or more values by default.

Example:

json

{

"tags": ["elasticsearch", "data", "types"]

}

Nested

The nested data type is a specialized version of the object data type. It allows arrays of objects to be indexed and queried independently of each other.

Example:

json

{

"properties": {

"users": {

"type": "nested",

"properties": {

"name": { "type": "text" },

"age": { "type": "integer" }

}

}

}

}

Geo Data Types

Elasticsearch provides geo data types for handling geographical data. These include geo_point for lat/lon points and geo_shape for complex shapes like polygons.

Example:

json

{

"properties": {

"location": { "type": "geo_point" }

}

}

Conclusion

In conclusion, understanding Elasticsearch data types is crucial for effective data modeling and search optimization. By choosing the right data type for each field, you can ensure that your data is stored, indexed, and queried in the most efficient way possible.

中文总结:

  1. Elasticsearch的灵活性和多功能性:Elasticsearch是一种高度可扩展的开源全文搜索和分析引擎,以其灵活性和多样的功能性而闻名。

  2. 核心数据类型:Elasticsearch支持多种核心数据类型,每种数据类型都设计用于处理特定种类的数据。

  3. 文本和关键字类型:文本类型用于全文搜索,经过分析处理,适合运行全文查询。关键字类型用于精确值搜索,未经过分析,适合排序、聚合或过滤。

  4. 数值类型:Elasticsearch支持五种数值类型(long、unsigned_long、integer、short和byte)用于处理不同大小的整数。对于小数,支持四种类型(double、float、half_float和scaled_float)。

  5. 日期类型:日期和date_nanos数据类型用于处理日期和时间。Elasticsearch可以处理多种日期格式,date_nanos类型可以精确到纳秒。

  6. 布尔类型:布尔数据类型用于表示true/false值。

  7. 复杂数据类型:Elasticsearch支持复杂数据类型以处理更复杂的数据结构,包括对象类型和嵌套类型。

  8. 对象类型:对象类型用于JSON对象,允许在文档内嵌套字段。

  9. 数组类型:Elasticsearch可以处理任何数据类型的数组,任何字段默认可以包含零个或多个值。

  10. 地理数据类型:Elasticsearch提供地理数据类型用于处理地理数据,包括geo_point用于经纬度点和geo_shape用于复杂形状如多边形。

通过理解Elasticsearch的数据类型,可以有效进行数据建模和搜索优化,确保数据以最有效的方式存储、索引和查询。

相关推荐
闲人编程7 小时前
Elasticsearch搜索引擎集成指南
python·elasticsearch·搜索引擎·jenkins·索引·副本·分片
先跑起来再说8 小时前
Git 入门到实战:一篇搞懂安装、命令、远程仓库与 IDEA 集成
ide·git·后端·elasticsearch·golang·intellij-idea
Dxy12393102169 小时前
深度解析 Elasticsearch:从倒排索引到 DSL 查询的实战突围
大数据·elasticsearch·搜索引擎
Dxy123931021611 小时前
别再让 ES 把你拖垮!5 个实战技巧让搜索性能提升 10 倍
大数据·elasticsearch·搜索引擎
星辰_mya16 小时前
Elasticsearch线上问题之OOM
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客16 小时前
使用 Groq 与 Elasticsearch 进行智能查询
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
张彦峰ZYF16 小时前
一套「策略化 Elasticsearch 召回平台」架构设计思路
大数据·elasticsearch·搜索引擎
我在人间贩卖青春1 天前
C++之数据类型的扩展
c++·字符串·数据类型
Dxy12393102161 天前
Elasticsearch 索引与映射:为你的数据打造一个“智能仓库”
大数据·elasticsearch·搜索引擎
倒流时光三十年2 天前
SpringBoot 数据库同步 Elasticsearch 性能优化
数据库·spring boot·elasticsearch