神经网络|(三)线性回归基础知识

【1】引言

前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:

神经网络|(一)加权平均法,感知机和神经元-CSDN博客

神经网络|(二)sigmoid神经元函数-CSDN博客

实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+b,这里把w理解为权重组成的矩阵,x理解为影响元素组成的矩阵,b就是阈值开关。

然而实际应用中,大多数时候我们获得的数据是y和x,权重w 和阈值开关-b躲在数据堆里。机器学习的目标之一就是通过大量的数据把k和b反推出来。

在数学上我们知道,如果是线性函数,知道自变量和因变量,反推斜率和解决过程叫做线性回归,线性回归常用的方法是最小二乘法。

【2】最小二乘法基础知识

最小二乘法的英文翻译是Least Squares Method,也就是最小平方法。

实际解释起来,需要用线性代数中的矩阵来辅助。

定义影响元素组成的矩阵x=xij(i=1,2...m,j=1,2...n),对应的元素权重组成的矩阵w=wij(i=1,2...n,j=1,2...m),写出来全是类似下方的模样:

++图1 自变量 x++

进行最小二乘法计算时,采用的计算公式为:

非常明确,yi是实际的已知量,xijwij+bi是将自变量xij和对应权重wij相乘再叠加阈值开关-bi后的"计算结果",这个计算结果越接近已知量yi,表明权重wij和阈值开关-bi给的越准。

所以在本质上,最小二乘法是查看函数拟合效果的基石。

【3】总结

了解了线性回归使用最小二乘法的基础知识。

相关推荐
小鸡吃米…28 分钟前
机器学习的商业化变现
人工智能·机器学习
爱吃泡芙的小白白1 小时前
突破传统:CNN卷积层(普通/空洞)核心技术演进与实战指南
人工智能·神经网络·cnn·卷积层·空洞卷积·普通卷积
木非哲3 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习
A尘埃4 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
小瑞瑞acd9 小时前
【小瑞瑞精讲】卷积神经网络(CNN):从入门到精通,计算机如何“看”懂世界?
人工智能·python·深度学习·神经网络·机器学习
民乐团扒谱机9 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
芷栀夏9 小时前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
Rorsion9 小时前
PyTorch实现线性回归
人工智能·pytorch·线性回归
Σίσυφος190010 小时前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面
rcc862810 小时前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习