神经网络|(三)线性回归基础知识

【1】引言

前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:

神经网络|(一)加权平均法,感知机和神经元-CSDN博客

神经网络|(二)sigmoid神经元函数-CSDN博客

实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+b,这里把w理解为权重组成的矩阵,x理解为影响元素组成的矩阵,b就是阈值开关。

然而实际应用中,大多数时候我们获得的数据是y和x,权重w 和阈值开关-b躲在数据堆里。机器学习的目标之一就是通过大量的数据把k和b反推出来。

在数学上我们知道,如果是线性函数,知道自变量和因变量,反推斜率和解决过程叫做线性回归,线性回归常用的方法是最小二乘法。

【2】最小二乘法基础知识

最小二乘法的英文翻译是Least Squares Method,也就是最小平方法。

实际解释起来,需要用线性代数中的矩阵来辅助。

定义影响元素组成的矩阵x=xij(i=1,2...m,j=1,2...n),对应的元素权重组成的矩阵w=wij(i=1,2...n,j=1,2...m),写出来全是类似下方的模样:

++图1 自变量 x++

进行最小二乘法计算时,采用的计算公式为:

非常明确,yi是实际的已知量,xijwij+bi是将自变量xij和对应权重wij相乘再叠加阈值开关-bi后的"计算结果",这个计算结果越接近已知量yi,表明权重wij和阈值开关-bi给的越准。

所以在本质上,最小二乘法是查看函数拟合效果的基石。

【3】总结

了解了线性回归使用最小二乘法的基础知识。

相关推荐
行走的bug...2 分钟前
利用计算机辅助数学运算
人工智能·算法·机器学习
生成论实验室14 分钟前
生成何以智能?——论道法术器贯通的生成式AGI新范式及其技术实现
人工智能·科技·神经网络·信息与通信·几何学
晨光321136 分钟前
Day43 训练和测试的规范写法
python·深度学习·机器学习
智算菩萨1 小时前
【Python机器学习】K-Means 聚类:数据分组与用户画像的完整技术指南
人工智能·python·机器学习
Java后端的Ai之路1 小时前
【神经网络基础】-前向传播说明指南
人工智能·深度学习·神经网络·前向传播
Buxxxxxx2 小时前
DAY 44 简单CNN
人工智能·神经网络·cnn
cyyt2 小时前
深度学习周报(12.22~12.28)
人工智能·算法·机器学习
智算菩萨2 小时前
【Python机器学习】回归模型评估指标深度解析:MAE、MSE、RMSE与R²的理论与实践
python·机器学习·回归
Cherry的跨界思维2 小时前
【AI测试全栈:认知升级】2、AI核心概念与全栈技术栈全景
人工智能·深度学习·机器学习·语言模型·ai测试·ai全栈·测试全栈
Master_oid2 小时前
机器学习27:增强式学习(Deep Reinforcement Learn)②
人工智能·学习·机器学习