神经网络|(三)线性回归基础知识

【1】引言

前序学习进程中,已经对简单神经元的工作模式有所了解,这种二元分类的工作机制,进一步使用sigmoid()函数进行了平滑表达。相关学习链接为:

神经网络|(一)加权平均法,感知机和神经元-CSDN博客

神经网络|(二)sigmoid神经元函数-CSDN博客

实际上,上述表达模型的一个基本原则是:元素和对应的权重,线性相乘后再和阈值开关作对比,元素的综合影响在本质上是一个线性函数,类似于y=wx+b,这里把w理解为权重组成的矩阵,x理解为影响元素组成的矩阵,b就是阈值开关。

然而实际应用中,大多数时候我们获得的数据是y和x,权重w 和阈值开关-b躲在数据堆里。机器学习的目标之一就是通过大量的数据把k和b反推出来。

在数学上我们知道,如果是线性函数,知道自变量和因变量,反推斜率和解决过程叫做线性回归,线性回归常用的方法是最小二乘法。

【2】最小二乘法基础知识

最小二乘法的英文翻译是Least Squares Method,也就是最小平方法。

实际解释起来,需要用线性代数中的矩阵来辅助。

定义影响元素组成的矩阵x=xij(i=1,2...m,j=1,2...n),对应的元素权重组成的矩阵w=wij(i=1,2...n,j=1,2...m),写出来全是类似下方的模样:

++图1 自变量 x++

进行最小二乘法计算时,采用的计算公式为:

非常明确,yi是实际的已知量,xijwij+bi是将自变量xij和对应权重wij相乘再叠加阈值开关-bi后的"计算结果",这个计算结果越接近已知量yi,表明权重wij和阈值开关-bi给的越准。

所以在本质上,最小二乘法是查看函数拟合效果的基石。

【3】总结

了解了线性回归使用最小二乘法的基础知识。

相关推荐
禁默2 小时前
机器学习基础入门(第五篇):半监督学习与强化学习
人工智能·学习·机器学习
mit6.8242 小时前
[Sora] 从检查点恢复训练 | `Booster`接口 | EMA模型 | .safetensors
人工智能·算法·机器学习
i.ajls3 小时前
强化学习入门-3(AC)
人工智能·深度学习·机器学习·actor-critic
Blossom.1183 小时前
把AI“浓缩”到1KB:超紧凑型决策树在MCU上的极限优化实战
人工智能·python·单片机·深度学习·决策树·机器学习·数据挖掘
weixin_429630263 小时前
第四章 决策树
python·决策树·机器学习
无风听海4 小时前
神经网络之计算图
人工智能·深度学习·神经网络
荔园微风4 小时前
ML.NET机器学习框架基本流程介绍
人工智能·机器学习·.net
点云SLAM4 小时前
矩阵奇异值分解算法(SVD)的导数 / 灵敏度分析
人工智能·线性代数·算法·机器学习·矩阵·数据压缩·svd算法
二向箔reverse4 小时前
神经网络中的批归一化(BatchNorm)
人工智能·深度学习·神经网络
蒋星熠4 小时前
基于深度学习的卫星图像分类(Kaggle比赛实战)
人工智能·python·深度学习·机器学习·分类·数据挖掘