leetcode - 802. Find Eventual Safe States

Description

There is a directed graph of n nodes with each node labeled from 0 to n - 1. The graph is represented by a 0-indexed 2D integer array graph where graph[i] is an integer array of nodes adjacent to node i, meaning there is an edge from node i to each node in graph[i].

A node is a terminal node if there are no outgoing edges. A node is a safe node if every possible path starting from that node leads to a terminal node (or another safe node).

Return an array containing all the safe nodes of the graph. The answer should be sorted in ascending order.

Example 1:

复制代码
Illustration of graph
Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
Output: [2,4,5,6]
Explanation: The given graph is shown above.
Nodes 5 and 6 are terminal nodes as there are no outgoing edges from either of them.
Every path starting at nodes 2, 4, 5, and 6 all lead to either node 5 or 6.

Example 2:

复制代码
Input: graph = [[1,2,3,4],[1,2],[3,4],[0,4],[]]
Output: [4]
Explanation:
Only node 4 is a terminal node, and every path starting at node 4 leads to node 4.

Constraints:

复制代码
n == graph.length
1 <= n <= 10^4
0 <= graph[i].length <= n
0 <= graph[i][j] <= n - 1
graph[i] is sorted in a strictly increasing order.
The graph may contain self-loops.
The number of edges in the graph will be in the range [1, 4 * 10^4].

Solution

Topological sort. If we start from the terminal node, and remove its edges, then the next terminal node would be safe node. So this is actually a topological sort problem.

Time complexity: o ( e d g e s + n o d e s ) o(edges + nodes) o(edges+nodes)

Space complexity: o ( e d g e s + n o d e s ) o(edges + nodes) o(edges+nodes)

Code

python3 复制代码
class Solution:
    def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:
        def build_graph(edges: list) -> tuple:
            graph = {i: [] for i in range(len(edges))}
            outdegree = {i: 0 for i in range(len(edges))}
            for i in range(len(edges)):
                for next_node in edges[i]:
                    graph[next_node].append(i)
                    outdegree[i] += 1
            return graph, outdegree
        # new_graph: {node: [node that points to this node]}
        # outdegree: {node: out_degree}
        new_graph, outdegree = build_graph(graph)
        queue = collections.deque([])
        res = set()
        for each_node in new_graph:
            if outdegree[each_node] == 0:
                queue.append(each_node)
        while queue:
            node = queue.popleft()
            if node in res:
                continue
            res.add(node)
            for neighbor_node in new_graph[node]:
                outdegree[neighbor_node] -= 1
                if outdegree[neighbor_node] == 0:
                    queue.append(neighbor_node)
        return list(sorted(res))
相关推荐
二进制person4 分钟前
Java SE--方法的使用
java·开发语言·算法
OneQ66630 分钟前
C++讲解---创建日期类
开发语言·c++·算法
JoJo_Way37 分钟前
LeetCode三数之和-js题解
javascript·算法·leetcode
.30-06Springfield1 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
凌肖战3 小时前
力扣网C语言编程题:在数组中查找目标值位置之二分查找法
c语言·算法·leetcode
weixin_478689763 小时前
十大排序算法汇总
java·算法·排序算法
luofeiju4 小时前
使用LU分解求解线性方程组
线性代数·算法
SKYDROID云卓小助手4 小时前
无人设备遥控器之自动调整编码技术篇
人工智能·嵌入式硬件·算法·自动化·信号处理
ysa0510305 小时前
数论基础知识和模板
数据结构·c++·笔记·算法
GEEK零零七5 小时前
Leetcode 1103. 分糖果 II
数学·算法·leetcode·等差数列