leetcode - 802. Find Eventual Safe States

Description

There is a directed graph of n nodes with each node labeled from 0 to n - 1. The graph is represented by a 0-indexed 2D integer array graph where graph[i] is an integer array of nodes adjacent to node i, meaning there is an edge from node i to each node in graph[i].

A node is a terminal node if there are no outgoing edges. A node is a safe node if every possible path starting from that node leads to a terminal node (or another safe node).

Return an array containing all the safe nodes of the graph. The answer should be sorted in ascending order.

Example 1:

复制代码
Illustration of graph
Input: graph = [[1,2],[2,3],[5],[0],[5],[],[]]
Output: [2,4,5,6]
Explanation: The given graph is shown above.
Nodes 5 and 6 are terminal nodes as there are no outgoing edges from either of them.
Every path starting at nodes 2, 4, 5, and 6 all lead to either node 5 or 6.

Example 2:

复制代码
Input: graph = [[1,2,3,4],[1,2],[3,4],[0,4],[]]
Output: [4]
Explanation:
Only node 4 is a terminal node, and every path starting at node 4 leads to node 4.

Constraints:

复制代码
n == graph.length
1 <= n <= 10^4
0 <= graph[i].length <= n
0 <= graph[i][j] <= n - 1
graph[i] is sorted in a strictly increasing order.
The graph may contain self-loops.
The number of edges in the graph will be in the range [1, 4 * 10^4].

Solution

Topological sort. If we start from the terminal node, and remove its edges, then the next terminal node would be safe node. So this is actually a topological sort problem.

Time complexity: o ( e d g e s + n o d e s ) o(edges + nodes) o(edges+nodes)

Space complexity: o ( e d g e s + n o d e s ) o(edges + nodes) o(edges+nodes)

Code

python3 复制代码
class Solution:
    def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:
        def build_graph(edges: list) -> tuple:
            graph = {i: [] for i in range(len(edges))}
            outdegree = {i: 0 for i in range(len(edges))}
            for i in range(len(edges)):
                for next_node in edges[i]:
                    graph[next_node].append(i)
                    outdegree[i] += 1
            return graph, outdegree
        # new_graph: {node: [node that points to this node]}
        # outdegree: {node: out_degree}
        new_graph, outdegree = build_graph(graph)
        queue = collections.deque([])
        res = set()
        for each_node in new_graph:
            if outdegree[each_node] == 0:
                queue.append(each_node)
        while queue:
            node = queue.popleft()
            if node in res:
                continue
            res.add(node)
            for neighbor_node in new_graph[node]:
                outdegree[neighbor_node] -= 1
                if outdegree[neighbor_node] == 0:
                    queue.append(neighbor_node)
        return list(sorted(res))
相关推荐
SweetCode3 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
ゞ 正在缓冲99%…16 分钟前
leetcode76.最小覆盖子串
java·算法·leetcode·字符串·双指针·滑动窗口
xuanjiong17 分钟前
纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·动态规划
惊鸿.Jh36 分钟前
【滑动窗口】3254. 长度为 K 的子数组的能量值 I
数据结构·算法·leetcode
明灯L37 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
碳基学AI42 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
独好紫罗兰1 小时前
洛谷题单3-P5718 【深基4.例2】找最小值-python-流程图重构
开发语言·python·算法
正脉科工 CAE仿真1 小时前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法
Dovis(誓平步青云)2 小时前
【数据结构】排序算法(中篇)·处理大数据的精妙
c语言·数据结构·算法·排序算法·学习方法