1905电影网中国地区电影数据分析(二) - 数据分析与可视化

文章目录

  • 前言
  • 一、数据分析
    • [1. 数据分析代码实现](#1. 数据分析代码实现)
    • [2. 分析后的数据截图](#2. 分析后的数据截图)
      • [2.1 描述性分析结果数据](#2.1 描述性分析结果数据)
      • [2.2 类别分布分析结果数据](#2.2 类别分布分析结果数据)
      • [2.3 模式识别分析结果数据](#2.3 模式识别分析结果数据)
      • [2.4 时间序列分析结果数据](#2.4 时间序列分析结果数据)
        • [2.4.1 每年的电影发布数量](#2.4.1 每年的电影发布数量)
        • [2.4.2 按年份的评分趋势](#2.4.2 按年份的评分趋势)
      • [2.5 相关性分析结果数据](#2.5 相关性分析结果数据)
  • 二、数据可视化
    • [1. 描述性分析数据可视化](#1. 描述性分析数据可视化)
    • [2. 类别分布分析数据可视化](#2. 类别分布分析数据可视化)
    • [3. 模式识别分析数据可视化](#3. 模式识别分析数据可视化)
    • [4. 时间序列分析数据可视化](#4. 时间序列分析数据可视化)
      • [4.1 每年的电影发布数量数据可视化](#4.1 每年的电影发布数量数据可视化)
      • [4.2 每年平均评分数据可视化](#4.2 每年平均评分数据可视化)
    • [5. 相关性分析数据可视化](#5. 相关性分析数据可视化)

前言

在数据科学的领域,数据分析和可视化是理解和解释数据的重要工具。通过对数据的深入分析,我们能够揭示潜在的趋势、模式和关系,从而为决策提供有力支持。本项目旨在对从1905电影网爬取的电影数据进行全面的数据分析与可视化,帮助我们更好地理解电影行业的动态和特征。

本项目的分析分为几个主要部分:描述性分析、类别分布分析、模式识别分析、时间序列分析和相关性分析。我们将使用Python的Pandas库进行数据处理,并通过SQLAlchemy将分析结果存储到MySQL数据库中。此外,数据可视化将通过图表和图形展示分析结果,使得数据的解读更加直观和易于理解。


一、数据分析

1. 数据分析代码实现

python 复制代码
import pandas as pd
from sqlalchemy import create_engine


def get_engine():
    # 设置数据库连接信息
    db_user = 'root'
    db_password = 'zxcvbq'
    db_host = '127.0.0.1'
    db_port = '3306'
    db_name = 'movie1905'

    # 创建数据库引擎
    return create_engine(f'mysql+pymysql://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}')


def save_df_to_db(dataframe, table_name):
    # 设置数据库连接信息
    db_user = 'root'
    db_password = 'zxcvbq'
    db_host = '127.0.0.1'  # 或者你的数据库主机地址
    db_port = '3306'  # MySQL默认端口是3306
    db_name = 'movie1905'

    # 创建数据库引擎
    engine = create_engine(f'mysql+mysqlconnector://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}')
    # 将df写入MySQL表
    dataframe.to_sql(name=table_name, con=engine, if_exists='replace', index=False)
    print("所有csv文件的数据已成功清洗并写入MySQL数据库")


def process_row(row, data_list):
    director = row['movie_director']
    actors = eval(row['movie_lead_actors'])
    for actor in actors:
        data_dict = {
            'director': director,
            'actor': actor
        }
        data_list.append(data_dict)


if __name__ == '__main__':
    # 加载数据到DataFrame
    query = "SELECT * FROM movie1905_china"
    df = pd.read_sql(query, get_engine())
    # 描述性分析
    df_describe = df[['movie_duration', 'movie_rating']].describe().round(2)
    save_df_to_db(df_describe.reset_index(), 'describe_analysis')
    # 类别分布分析
    df_category = df['movie_genres'].apply(lambda x: eval(x)).explode().value_counts()
    save_df_to_db(df_category.reset_index(), 'category_analysis')
    # 模式识别分析
    df_copy = df.copy()
    df_copy['movie_director'] = df_copy['movie_director'].replace('未知', None)
    df_copy.dropna(subset=['movie_director', 'movie_lead_actors'], inplace=True)
    df_mode = df_copy[['movie_director', 'movie_lead_actors']]
    director_actor_list = []
    df_mode.apply(lambda x: process_row(x, director_actor_list), axis=1)
    df_director_actor = pd.DataFrame(director_actor_list)
    df_schema = df_director_actor.groupby(['director', 'actor']).size().reset_index(name='count')
    save_df_to_db(df_schema, 'mode_analysis')
    # 时间序列分析
    # 每年的电影发布数量
    df_release_date = df.rename(columns={'movie_release_date': 'movie_release_year'})
    df_year = df_release_date['movie_release_year'].str[0:4].value_counts()
    save_df_to_db(df_year.reset_index(), 'year_amount_analysis')
    # 按年份的评分趋势
    df['movie_year'] = df['movie_release_date'].str[0:4]
    year_rating = df.groupby('movie_year')['movie_rating'].agg(['mean', 'count']).round(1)
    save_df_to_db(year_rating.reset_index(), 'year_rating_analysis')
    # 相关性分析
    df_corr = df[['movie_duration', 'movie_rating']].corr(method='pearson').round(2)
    save_df_to_db(df_corr.reset_index(), 'corr_analysis')

2. 分析后的数据截图

2.1 描述性分析结果数据

2.2 类别分布分析结果数据

2.3 模式识别分析结果数据

2.4 时间序列分析结果数据

2.4.1 每年的电影发布数量
2.4.2 按年份的评分趋势

2.5 相关性分析结果数据

二、数据可视化

1. 描述性分析数据可视化

2. 类别分布分析数据可视化


3. 模式识别分析数据可视化

4. 时间序列分析数据可视化

4.1 每年的电影发布数量数据可视化

4.2 每年平均评分数据可视化

5. 相关性分析数据可视化

相关推荐
dme.7 分钟前
Javascript之DOM操作
开发语言·javascript·爬虫·python·ecmascript
加油吧zkf17 分钟前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
t_hj18 分钟前
python规划
python
czhc114007566333 分钟前
Linux 76 rsync
linux·运维·python
悠悠小茉莉1 小时前
Win11 安装 Visual Studio(保姆教程 - 更新至2025.07)
c++·ide·vscode·python·visualstudio·visual studio
m0_625686551 小时前
day53
python
Real_man2 小时前
告别 requirements.txt,拥抱 pyproject.toml和uv的现代Python工作流
python
站大爷IP2 小时前
Python文件操作的"保险箱":with语句深度实战指南
python
运器1233 小时前
【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
开发语言·人工智能·python·算法·ai·散列表·ai编程
大数据CLUB4 小时前
基于spark的奥运会奖牌变化数据分析
大数据·hadoop·数据分析·spark