1905电影网中国地区电影数据分析(二) - 数据分析与可视化

文章目录

  • 前言
  • 一、数据分析
    • [1. 数据分析代码实现](#1. 数据分析代码实现)
    • [2. 分析后的数据截图](#2. 分析后的数据截图)
      • [2.1 描述性分析结果数据](#2.1 描述性分析结果数据)
      • [2.2 类别分布分析结果数据](#2.2 类别分布分析结果数据)
      • [2.3 模式识别分析结果数据](#2.3 模式识别分析结果数据)
      • [2.4 时间序列分析结果数据](#2.4 时间序列分析结果数据)
        • [2.4.1 每年的电影发布数量](#2.4.1 每年的电影发布数量)
        • [2.4.2 按年份的评分趋势](#2.4.2 按年份的评分趋势)
      • [2.5 相关性分析结果数据](#2.5 相关性分析结果数据)
  • 二、数据可视化
    • [1. 描述性分析数据可视化](#1. 描述性分析数据可视化)
    • [2. 类别分布分析数据可视化](#2. 类别分布分析数据可视化)
    • [3. 模式识别分析数据可视化](#3. 模式识别分析数据可视化)
    • [4. 时间序列分析数据可视化](#4. 时间序列分析数据可视化)
      • [4.1 每年的电影发布数量数据可视化](#4.1 每年的电影发布数量数据可视化)
      • [4.2 每年平均评分数据可视化](#4.2 每年平均评分数据可视化)
    • [5. 相关性分析数据可视化](#5. 相关性分析数据可视化)

前言

在数据科学的领域,数据分析和可视化是理解和解释数据的重要工具。通过对数据的深入分析,我们能够揭示潜在的趋势、模式和关系,从而为决策提供有力支持。本项目旨在对从1905电影网爬取的电影数据进行全面的数据分析与可视化,帮助我们更好地理解电影行业的动态和特征。

本项目的分析分为几个主要部分:描述性分析、类别分布分析、模式识别分析、时间序列分析和相关性分析。我们将使用Python的Pandas库进行数据处理,并通过SQLAlchemy将分析结果存储到MySQL数据库中。此外,数据可视化将通过图表和图形展示分析结果,使得数据的解读更加直观和易于理解。


一、数据分析

1. 数据分析代码实现

python 复制代码
import pandas as pd
from sqlalchemy import create_engine


def get_engine():
    # 设置数据库连接信息
    db_user = 'root'
    db_password = 'zxcvbq'
    db_host = '127.0.0.1'
    db_port = '3306'
    db_name = 'movie1905'

    # 创建数据库引擎
    return create_engine(f'mysql+pymysql://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}')


def save_df_to_db(dataframe, table_name):
    # 设置数据库连接信息
    db_user = 'root'
    db_password = 'zxcvbq'
    db_host = '127.0.0.1'  # 或者你的数据库主机地址
    db_port = '3306'  # MySQL默认端口是3306
    db_name = 'movie1905'

    # 创建数据库引擎
    engine = create_engine(f'mysql+mysqlconnector://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}')
    # 将df写入MySQL表
    dataframe.to_sql(name=table_name, con=engine, if_exists='replace', index=False)
    print("所有csv文件的数据已成功清洗并写入MySQL数据库")


def process_row(row, data_list):
    director = row['movie_director']
    actors = eval(row['movie_lead_actors'])
    for actor in actors:
        data_dict = {
            'director': director,
            'actor': actor
        }
        data_list.append(data_dict)


if __name__ == '__main__':
    # 加载数据到DataFrame
    query = "SELECT * FROM movie1905_china"
    df = pd.read_sql(query, get_engine())
    # 描述性分析
    df_describe = df[['movie_duration', 'movie_rating']].describe().round(2)
    save_df_to_db(df_describe.reset_index(), 'describe_analysis')
    # 类别分布分析
    df_category = df['movie_genres'].apply(lambda x: eval(x)).explode().value_counts()
    save_df_to_db(df_category.reset_index(), 'category_analysis')
    # 模式识别分析
    df_copy = df.copy()
    df_copy['movie_director'] = df_copy['movie_director'].replace('未知', None)
    df_copy.dropna(subset=['movie_director', 'movie_lead_actors'], inplace=True)
    df_mode = df_copy[['movie_director', 'movie_lead_actors']]
    director_actor_list = []
    df_mode.apply(lambda x: process_row(x, director_actor_list), axis=1)
    df_director_actor = pd.DataFrame(director_actor_list)
    df_schema = df_director_actor.groupby(['director', 'actor']).size().reset_index(name='count')
    save_df_to_db(df_schema, 'mode_analysis')
    # 时间序列分析
    # 每年的电影发布数量
    df_release_date = df.rename(columns={'movie_release_date': 'movie_release_year'})
    df_year = df_release_date['movie_release_year'].str[0:4].value_counts()
    save_df_to_db(df_year.reset_index(), 'year_amount_analysis')
    # 按年份的评分趋势
    df['movie_year'] = df['movie_release_date'].str[0:4]
    year_rating = df.groupby('movie_year')['movie_rating'].agg(['mean', 'count']).round(1)
    save_df_to_db(year_rating.reset_index(), 'year_rating_analysis')
    # 相关性分析
    df_corr = df[['movie_duration', 'movie_rating']].corr(method='pearson').round(2)
    save_df_to_db(df_corr.reset_index(), 'corr_analysis')

2. 分析后的数据截图

2.1 描述性分析结果数据

2.2 类别分布分析结果数据

2.3 模式识别分析结果数据

2.4 时间序列分析结果数据

2.4.1 每年的电影发布数量
2.4.2 按年份的评分趋势

2.5 相关性分析结果数据

二、数据可视化

1. 描述性分析数据可视化

2. 类别分布分析数据可视化


3. 模式识别分析数据可视化

4. 时间序列分析数据可视化

4.1 每年的电影发布数量数据可视化

4.2 每年平均评分数据可视化

5. 相关性分析数据可视化

相关推荐
项目題供诗9 分钟前
黑马python(二十五)
开发语言·python
读书点滴13 分钟前
笨方法学python -练习14
java·前端·python
笑衬人心。29 分钟前
Ubuntu 22.04 修改默认 Python 版本为 Python3 笔记
笔记·python·ubuntu
Brduino脑机接口技术答疑41 分钟前
脑机新手指南(二十一)基于 Brainstorm 的 MEG/EEG 数据分析(上篇)
数据挖掘·数据分析
蛋仔聊测试42 分钟前
Playwright 中 Page 对象的常用方法详解
python
镜舟科技42 分钟前
StarRocks × Tableau 连接器完整使用指南 | 高效数据分析从连接开始
starrocks·数据分析·数据可视化·tableau·连接器·交互式分析·mpp 数据库
前端付豪1 小时前
17、自动化才是正义:用 Python 接管你的日常琐事
后端·python
jioulongzi1 小时前
记录一次莫名奇妙的跨域502(badgateway)错误
开发语言·python
破无差1 小时前
python实现简单的地图绘制与标记20250705
python
喜欢吃豆2 小时前
目前最火的agent方向-A2A快速实战构建(二): AutoGen模型集成指南:从OpenAI到本地部署的全场景LLM解决方案
后端·python·深度学习·flask·大模型