Python+OpenCV(1)---傅里叶变换

一,傅里叶变换原理

傅里叶的原理表明,任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。利用傅立叶变换算法直接测量原始信号,以累加方式来计算该信号中不同正弦波信号的频率振幅相位就可以表示原始信号。

二,傅里叶变换

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像
o=cv2.imread("test.png",0)
# 傅里叶变换
f=np.fft.fft2(o)
# 傅里叶变换后,将低频部分移到中心位置
fshift=np.fft.fftshift(f)
# 傅里叶逆变换 转到0-255
result=20*np.log(np.abs(fshift))
# 显示图像  1行2列,的第一列
plt.subplot(121)
# 原始图像
plt.imshow(o,cmap='gray')
# 傅里叶变换结果
plt.title('original')
# 关闭坐标轴
#plt.axis('off')

# 显示图像  1行2列的第二列
plt.subplot(122)
# 傅里叶变换结果
plt.imshow(result,cmap='gray')
# 傅里叶变换结果
plt.title('result')
# 关闭坐标轴
#plt.axis('off')
# 显示图像
plt.show()

三,逆傅里叶变换

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
#加载图像
o=cv2.imread('test.png', cv2.IMREAD_UNCHANGED)
#傅里叶变换
f=np.fft.fft2(o)
#傅里叶变换后,将低频部分移到中心位置
fshift=np.fft.fftshift(f)
#傅里叶逆变换
ishift=np.fft.ifftshift(fshift)
#傅里叶逆变换
io=np.fft.ifft2(ishift)
#取绝对值
io=np.abs(io)

#显示图像
plt.subplot(121)
#原始图像
plt.imshow(o,cmap='gray')
#原始图像的标题
plt.title('original')
#原始图像的坐标轴不显示
plt.axis('off')

#显示图像
plt.subplot(122)
#傅里叶变换结果图像
plt.imshow(io,cmap='gray')
#傅里叶变换结果图像的标题
plt.title('result')
#傅里叶变换结果图像的坐标轴不显示
plt.axis('off')
#显示图像
plt.show()

四,高通滤波

高频对应图像内变化越来越快的灰度分量,是由灰度的尖锐过渡造成的。例如,在一幅大草原的图像中,其中狮子的边缘等信息。

python 复制代码
# 傅里叶 高通滤波
# 
import cv2
import numpy as np
import matplotlib.pyplot as plt
o=cv2.imread('test.png',0)
# 傅里叶变换
f=np.fft.fft2(o)
# 傅里叶变换后,将低频部分移到中心位置
fshift=np.fft.fftshift(f)
# 高通滤波
rows,cols=o.shape
# 中心位置
crow,ccol=int(rows/2),int(cols/2)
# 高通滤波,将低频部分置零 (中心部分)
fshift[crow-30:crow+30,ccol-30:ccol+30]=0
# 傅里叶逆变换
ishift=np.fft.ifftshift(fshift)
# 傅里叶逆变换
io=np.fft.ifft2(ishift)
# 取绝对值
io=np.abs(io)
# 显示图像
plt.subplot(121)
plt.imshow(o,cmap='gray')
# 显示图像
plt.subplot(122)
plt.imshow(io,cmap='gray')
plt.show()

五,低通滤波

低频对应图像内变化缓慢的灰度分量。例如,在一幅大草原的图像中,低频对应着广袤的颜色趋于一致的草原。

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
o=cv2.imread("test.png",0)
dft=cv2.dft(np.float32(o),flags=cv2.DFT_COMPLEX_OUTPUT)
dshift=np.fft.fftshift(dft)
rs,cs=o.shape
cr,cc=int(rs/2),int(cs/2)
mask=np.zeros((rs,cs,2),np.int8)
mask[cr-30:cr+30,cc-30:cc+30]=1
md=dshift*mask
imd=np.fft.ifftshift(md)
io=cv2.idft(imd)
i0=cv2.magnitude(io[:,:,0],io[:,:,1])

# 原图像
plt.subplot(121)
plt.imshow(o,cmap='Grays')
plt.axis('off')
plt.title('original')

# 频域处理后图像
plt.subplot(122)
plt.imshow(io ,cmap='Grays')
plt.axis('off')
plt.title('result')
plt.show()
相关推荐
helloworldandy17 小时前
高性能图像处理库
开发语言·c++·算法
2401_8365631817 小时前
C++中的枚举类高级用法
开发语言·c++·算法
hhy_smile17 小时前
Class in Python
java·前端·python
chao18984417 小时前
矢量拟合算法在网络参数有理式拟合中的应用
开发语言·算法
whale fall17 小时前
celery -A tool.src.main worker --loglevel=info --queues=worker1_queue & 什么意思
python·学习·apache
naruto_lnq17 小时前
使用Fabric自动化你的部署流程
jvm·数据库·python
EmbedLinX17 小时前
C++ 面向对象
开发语言·c++
喵手17 小时前
Python爬虫实战:采集博客园 Cnblogs文章标题、发布日期、标签以及HTML正文等(附 Markdown 文档格式预览)!
爬虫·python·爬虫实战·python爬虫工程化实战·零基础python爬虫教学·博客园文章采集·博客园文章采集转md格式
OLOLOadsd12317 小时前
柑橘类水果病害识别与分级_faster-rcnn_hrnetv2p-w32-1x_coco实现
python
weixin_4454023017 小时前
C++中的命令模式变体
开发语言·c++·算法