使用PyTorch实现逻辑回归:从训练到模型保存与加载

  1. 引入必要的库

首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,matplotlib用于结果的可视化。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2. 加载自定义数据集

有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。使用pandas来加载数据,并进行预处理。

python 复制代码
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有多列特征和一个二分类标签
X = data.iloc[:, :-1].values.astype(np.float32)  # 特征
y = data.iloc[:, -1].values.astype(np.float32)   # 标签

# 将标签转换为0和1
y = np.where(y == 'positive', 1, 0)

3. 创建数据集和数据加载器

使用PyTorch的TensorDatasetDataLoader来创建数据集和数据加载器。

python 复制代码
# 创建数据集和数据加载器
dataset = TensorDataset(torch.tensor(X), torch.tensor(y))
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)

4. 定义逻辑回归模型

使用PyTorch的nn.Module来定义逻辑回归模型。

python 复制代码
class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, 1)
    
    def forward(self, x):
        outputs = torch.sigmoid(self.linear(x))
        return outputs

# 初始化模型
input_dim = X.shape[1]
model = LogisticRegression(input_dim)

5. 训练模型

定义损失函数和优化器,然后训练模型。

python 复制代码
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
    for inputs, labels in train_loader:
        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs.flatten(), labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

6. 保存模型

训练完成后,可以使用PyTorch的torch.save函数来保存模型。

python 复制代码
# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')

7. 加载模型并进行预测

在需要时,可以使用torch.load函数加载模型,并进行预测。

python 复制代码
# 加载模型
model = LogisticRegression(input_dim)
model.load_state_dict(torch.load('logistic_regression_model.pth'))
model.eval()

# 进行预测
with torch.no_grad():
    sample_inputs = torch.tensor(X[:5]).float()  # 示例输入
    predictions = model(sample_inputs)
    predicted_labels = (predictions.flatten() > 0.5).int()

print("Predicted Labels:", predicted_labels.numpy())
相关推荐
AKAMAI1 小时前
跳过复杂环节:Akamai应用平台让Kubernetes生产就绪——现已正式发布
人工智能·云原生·云计算
新智元3 小时前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元3 小时前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心3 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术3 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing4 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_4 小时前
NCCL的用户缓冲区注册
人工智能
sans_4 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算4 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc
虫无涯5 小时前
LangSmith:大模型应用开发的得力助手
人工智能·langchain·llm