使用PyTorch实现逻辑回归:从训练到模型保存与加载

  1. 引入必要的库

首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,matplotlib用于结果的可视化。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2. 加载自定义数据集

有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。使用pandas来加载数据,并进行预处理。

python 复制代码
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有多列特征和一个二分类标签
X = data.iloc[:, :-1].values.astype(np.float32)  # 特征
y = data.iloc[:, -1].values.astype(np.float32)   # 标签

# 将标签转换为0和1
y = np.where(y == 'positive', 1, 0)

3. 创建数据集和数据加载器

使用PyTorch的TensorDatasetDataLoader来创建数据集和数据加载器。

python 复制代码
# 创建数据集和数据加载器
dataset = TensorDataset(torch.tensor(X), torch.tensor(y))
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)

4. 定义逻辑回归模型

使用PyTorch的nn.Module来定义逻辑回归模型。

python 复制代码
class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, 1)
    
    def forward(self, x):
        outputs = torch.sigmoid(self.linear(x))
        return outputs

# 初始化模型
input_dim = X.shape[1]
model = LogisticRegression(input_dim)

5. 训练模型

定义损失函数和优化器,然后训练模型。

python 复制代码
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
    for inputs, labels in train_loader:
        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs.flatten(), labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

6. 保存模型

训练完成后,可以使用PyTorch的torch.save函数来保存模型。

python 复制代码
# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')

7. 加载模型并进行预测

在需要时,可以使用torch.load函数加载模型,并进行预测。

python 复制代码
# 加载模型
model = LogisticRegression(input_dim)
model.load_state_dict(torch.load('logistic_regression_model.pth'))
model.eval()

# 进行预测
with torch.no_grad():
    sample_inputs = torch.tensor(X[:5]).float()  # 示例输入
    predictions = model(sample_inputs)
    predicted_labels = (predictions.flatten() > 0.5).int()

print("Predicted Labels:", predicted_labels.numpy())
相关推荐
宝杰X741 分钟前
Compose Multiplatform+Kotlin Multiplatfrom 第七弹跨平台 AI开源
人工智能·开源·kotlin
Java樱木42 分钟前
AI 编程 Trae ,有重大更新!用 Trae 做了个图书借阅网站!
人工智能·ai编程
悟乙己44 分钟前
大型语言模型(LLM)文本中提取结构化信息:LangExtract(一)
人工智能·语言模型·自然语言处理
Theodore_10221 小时前
机器学习(3)梯度下降
人工智能·机器学习
LiJieNiub2 小时前
YOLOv3:目标检测领域的经典革新
人工智能·计算机视觉·目标跟踪
yanxing.D2 小时前
OpenCV轻松入门_面向python(第六章 阈值处理)
人工智能·python·opencv·计算机视觉
霍格沃兹测试开发学社测试人社区3 小时前
新手指南:通过 Playwright MCP Server 为 AI Agent 实现浏览器自动化能力
运维·人工智能·自动化
JJJJ_iii3 小时前
【机器学习01】监督学习、无监督学习、线性回归、代价函数
人工智能·笔记·python·学习·机器学习·jupyter·线性回归
qq_416276425 小时前
LOFAR物理频谱特征提取及实现
人工智能
余俊晖6 小时前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析