使用PyTorch实现逻辑回归:从训练到模型保存与加载

  1. 引入必要的库

首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,matplotlib用于结果的可视化。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2. 加载自定义数据集

有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。使用pandas来加载数据,并进行预处理。

python 复制代码
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有多列特征和一个二分类标签
X = data.iloc[:, :-1].values.astype(np.float32)  # 特征
y = data.iloc[:, -1].values.astype(np.float32)   # 标签

# 将标签转换为0和1
y = np.where(y == 'positive', 1, 0)

3. 创建数据集和数据加载器

使用PyTorch的TensorDatasetDataLoader来创建数据集和数据加载器。

python 复制代码
# 创建数据集和数据加载器
dataset = TensorDataset(torch.tensor(X), torch.tensor(y))
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)

4. 定义逻辑回归模型

使用PyTorch的nn.Module来定义逻辑回归模型。

python 复制代码
class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, 1)
    
    def forward(self, x):
        outputs = torch.sigmoid(self.linear(x))
        return outputs

# 初始化模型
input_dim = X.shape[1]
model = LogisticRegression(input_dim)

5. 训练模型

定义损失函数和优化器,然后训练模型。

python 复制代码
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
    for inputs, labels in train_loader:
        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs.flatten(), labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

6. 保存模型

训练完成后,可以使用PyTorch的torch.save函数来保存模型。

python 复制代码
# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')

7. 加载模型并进行预测

在需要时,可以使用torch.load函数加载模型,并进行预测。

python 复制代码
# 加载模型
model = LogisticRegression(input_dim)
model.load_state_dict(torch.load('logistic_regression_model.pth'))
model.eval()

# 进行预测
with torch.no_grad():
    sample_inputs = torch.tensor(X[:5]).float()  # 示例输入
    predictions = model(sample_inputs)
    predicted_labels = (predictions.flatten() > 0.5).int()

print("Predicted Labels:", predicted_labels.numpy())
相关推荐
AKAMAI13 分钟前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.2 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight2 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha3 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir3 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王3 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室4 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛114 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI5 小时前
RAG系列(一) 架构基础与原理
人工智能·架构
北邮刘老师5 小时前
【智能体互联协议解析】北邮ACPs协议和代码与智能体互联AIP标准的关系
人工智能·大模型·智能体·智能体互联网