使用PyTorch实现逻辑回归:从训练到模型保存与加载

  1. 引入必要的库

首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,matplotlib用于结果的可视化。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

2. 加载自定义数据集

有一个CSV文件custom_dataset.csv,其中包含特征(自变量)和标签(因变量)。使用pandas来加载数据,并进行预处理。

python 复制代码
# 加载自定义数据集
data = pd.read_csv('custom_dataset.csv')

# 假设数据集中有多列特征和一个二分类标签
X = data.iloc[:, :-1].values.astype(np.float32)  # 特征
y = data.iloc[:, -1].values.astype(np.float32)   # 标签

# 将标签转换为0和1
y = np.where(y == 'positive', 1, 0)

3. 创建数据集和数据加载器

使用PyTorch的TensorDatasetDataLoader来创建数据集和数据加载器。

python 复制代码
# 创建数据集和数据加载器
dataset = TensorDataset(torch.tensor(X), torch.tensor(y))
train_loader = DataLoader(dataset, batch_size=32, shuffle=True)

4. 定义逻辑回归模型

使用PyTorch的nn.Module来定义逻辑回归模型。

python 复制代码
class LogisticRegression(nn.Module):
    def __init__(self, input_dim):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_dim, 1)
    
    def forward(self, x):
        outputs = torch.sigmoid(self.linear(x))
        return outputs

# 初始化模型
input_dim = X.shape[1]
model = LogisticRegression(input_dim)

5. 训练模型

定义损失函数和优化器,然后训练模型。

python 复制代码
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
    for inputs, labels in train_loader:
        # 前向传播
        outputs = model(inputs)
        loss = criterion(outputs.flatten(), labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    if (epoch+1) % 10 == 0:
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

6. 保存模型

训练完成后,可以使用PyTorch的torch.save函数来保存模型。

python 复制代码
# 保存模型
torch.save(model.state_dict(), 'logistic_regression_model.pth')

7. 加载模型并进行预测

在需要时,可以使用torch.load函数加载模型,并进行预测。

python 复制代码
# 加载模型
model = LogisticRegression(input_dim)
model.load_state_dict(torch.load('logistic_regression_model.pth'))
model.eval()

# 进行预测
with torch.no_grad():
    sample_inputs = torch.tensor(X[:5]).float()  # 示例输入
    predictions = model(sample_inputs)
    predicted_labels = (predictions.flatten() > 0.5).int()

print("Predicted Labels:", predicted_labels.numpy())
相关推荐
小鸡吃米…1 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫2 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)2 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan2 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维2 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS2 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd2 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟3 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然3 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~3 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1