自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合

自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score

# 生成示例数据:y = 3 * X + 4 + 噪声
np.random.seed(42)
X = 2 * np.random.rand(100, 1)  # 100个样本,1个特征
y = 3 * X + 4 + np.random.randn(100, 1)  # 线性关系 + 随机噪声

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建线性回归模型并拟合
model = LinearRegression()
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse}")

r2 = r2_score(y_test, y_pred)
print(f"R²: {r2}")

# 可视化结果
plt.scatter(X_train, y_train, color='blue', label='Training data')
plt.scatter(X_test, y_test, color='green', label='Test data')
plt.plot(X_test, y_pred, color='red', label='Regression line')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()
相关推荐
Work(沉淀版)14 分钟前
DAY 40
人工智能·深度学习·机器学习
程序员的世界你不懂2 小时前
Appium+python自动化(八)- 认识Appium- 下章
python·appium·自动化
_r0bin_3 小时前
前端面试准备-7
开发语言·前端·javascript·fetch·跨域·class
zhang98800003 小时前
JavaScript 核心原理深度解析-不停留于表面的VUE等的使用!
开发语言·javascript·vue.js
恸流失3 小时前
DJango项目
后端·python·django
Julyyyyyyyyyyy4 小时前
【软件测试】web自动化:Pycharm+Selenium+Firefox(一)
python·selenium·pycharm·自动化
Fanxt_Ja5 小时前
【JVM】三色标记法原理
java·开发语言·jvm·算法
蓝婷儿5 小时前
6个月Python学习计划 Day 15 - 函数式编程、高阶函数、生成器/迭代器
开发语言·python·学习
love530love5 小时前
【笔记】在 MSYS2(MINGW64)中正确安装 Rust
运维·开发语言·人工智能·windows·笔记·python·rust
A林玖5 小时前
【机器学习】主成分分析 (PCA)
人工智能·机器学习