分享|instructionfine-tuning 指令微调是提高LLM性能和泛化能力的通用方法

《生成式AI导论》课程中,李宏毅老师提到一篇关于" instruction fine-tuning" 指令微调的论文:

《Scaling Instruction-Finetuned Language Models》

摘要分享:

事实证明,

在一组以指令形式表达 的数据集上微调 语言模型可以提高模型性能和对看不见的任务的泛化

在本文中,我们探讨了指令微调,特别关注

(1) 扩展任务数量,

(2) 扩展模型大小,以及

(3) 对思维链数据进行微调。

我们发现,具有上述方面的指令微调极大地提高了各种模型类(PaLM、T5、U-PaLM)、提示设置(零样本、少样本、CoT)和评估基准(MMLU、BBH、TyDiQA、MGSM、开放式生成)的性能。

例如,在 1.8K 任务上进行指令微调的 Flan-PaLM 540B 性能大大优于 PALM 540B(平均+9.4%)。Flan-PaLM 540B 在多个基准测试中实现了最先进的性能,例如在五次 MMLU 上达到 75.2%。我们还公开发布了 Flan-T5 检查点,即使与更大的模型(如 PaLM 62B)相比,它也能实现强大的小样本性能。

总的来说,指令微调是提高预训练语言模型的性能和可用性的通用方法。

原文链接:

[2210.11416] Scaling Instruction-Finetuned Language Models

相关推荐
余俊晖20 分钟前
多模态文档理解视觉token剪枝思路
人工智能·算法·剪枝·多模态
一RTOS一22 分钟前
从操作系统到具身智能,东土科技正加速构建自主可控产业链
人工智能·科技·鸿道intewell·鸿道操作系统·鸿道实时操作系统·国产嵌入式操作系统选型
余俊晖25 分钟前
多模态大模型OCR幻觉缓解思路:DianJin-OCR-R1通过“再看一眼”图像减轻幻觉
人工智能·ocr
柳安忆36 分钟前
idea生成数据集调研
人工智能·笔记
青春不败 177-3266-052038 分钟前
AI+Python驱动的无人机生态三维建模与碳储、生物量、LULC估算技术
人工智能·python·无人机·生态学·遥感·多光谱遥感
德育处主任1 小时前
地表最强“慧眼”,给大模型戴上智能眼镜 PaddleOCR-VL
人工智能·机器学习·图像识别
AI浩1 小时前
基于信息保留与细粒度特征聚合的无人机目标检测
人工智能·目标检测·无人机
dxnb221 小时前
Datawhale25年10月组队学习:math for AI+Task2线性代数
人工智能·学习·线性代数
java1234_小锋1 小时前
TensorFlow2 Python深度学习 - 使用Dropout层解决过拟合问题
python·深度学习·tensorflow·tensorflow2
数字化顾问1 小时前
AI+大数据时代:从架构重构看时序数据库的价值释放——关键概念、核心技巧与代码实践
人工智能