分享|instructionfine-tuning 指令微调是提高LLM性能和泛化能力的通用方法

《生成式AI导论》课程中,李宏毅老师提到一篇关于" instruction fine-tuning" 指令微调的论文:

《Scaling Instruction-Finetuned Language Models》

摘要分享:

事实证明,

在一组以指令形式表达 的数据集上微调 语言模型可以提高模型性能和对看不见的任务的泛化

在本文中,我们探讨了指令微调,特别关注

(1) 扩展任务数量,

(2) 扩展模型大小,以及

(3) 对思维链数据进行微调。

我们发现,具有上述方面的指令微调极大地提高了各种模型类(PaLM、T5、U-PaLM)、提示设置(零样本、少样本、CoT)和评估基准(MMLU、BBH、TyDiQA、MGSM、开放式生成)的性能。

例如,在 1.8K 任务上进行指令微调的 Flan-PaLM 540B 性能大大优于 PALM 540B(平均+9.4%)。Flan-PaLM 540B 在多个基准测试中实现了最先进的性能,例如在五次 MMLU 上达到 75.2%。我们还公开发布了 Flan-T5 检查点,即使与更大的模型(如 PaLM 62B)相比,它也能实现强大的小样本性能。

总的来说,指令微调是提高预训练语言模型的性能和可用性的通用方法。

原文链接:

[2210.11416] Scaling Instruction-Finetuned Language Models

相关推荐
checkcheckck9 分钟前
spring ai 适配 流式回答、mcp、milvus向量数据库、rag、聊天会话记忆
人工智能
Microvision维视智造11 分钟前
从“人工眼”到‘智能眼’:EZ-Vision视觉系统如何重构生产线视觉检测精度?
图像处理·人工智能·重构·视觉检测
我不是大佬zvj12 分钟前
解决使用vscode连接服务器出现“正在下载 VS Code 服务器...”
语言模型
巫婆理发22221 分钟前
神经网络(多层感知机)(第二课第二周)
人工智能·深度学习·神经网络
lxmyzzs25 分钟前
【打怪升级 - 03】YOLO11/YOLO12/YOLOv10/YOLOv8 完全指南:从理论到代码实战,新手入门必看教程
人工智能·神经网络·yolo·目标检测·计算机视觉
SEO_juper26 分钟前
企业级 AI 工具选型报告:9 个技术平台的 ROI 对比与部署策略
人工智能·搜索引擎·百度·llm·工具·geo·数字营销
Coovally AI模型快速验证38 分钟前
数据集分享 | 智慧农业实战数据集精选
人工智能·算法·目标检测·机器学习·计算机视觉·目标跟踪·无人机
xw337340956439 分钟前
彩色转灰度的核心逻辑:三种经典方法及原理对比
人工智能·python·深度学习·opencv·计算机视觉
蓝桉80239 分钟前
opencv学习(图像金字塔)
人工智能·opencv·学习
倔强青铜三43 分钟前
为什么 self 与 super() 成了 Python 的永恒痛点?
人工智能·python·面试