分享|instructionfine-tuning 指令微调是提高LLM性能和泛化能力的通用方法

《生成式AI导论》课程中,李宏毅老师提到一篇关于" instruction fine-tuning" 指令微调的论文:

《Scaling Instruction-Finetuned Language Models》

摘要分享:

事实证明,

在一组以指令形式表达 的数据集上微调 语言模型可以提高模型性能和对看不见的任务的泛化

在本文中,我们探讨了指令微调,特别关注

(1) 扩展任务数量,

(2) 扩展模型大小,以及

(3) 对思维链数据进行微调。

我们发现,具有上述方面的指令微调极大地提高了各种模型类(PaLM、T5、U-PaLM)、提示设置(零样本、少样本、CoT)和评估基准(MMLU、BBH、TyDiQA、MGSM、开放式生成)的性能。

例如,在 1.8K 任务上进行指令微调的 Flan-PaLM 540B 性能大大优于 PALM 540B(平均+9.4%)。Flan-PaLM 540B 在多个基准测试中实现了最先进的性能,例如在五次 MMLU 上达到 75.2%。我们还公开发布了 Flan-T5 检查点,即使与更大的模型(如 PaLM 62B)相比,它也能实现强大的小样本性能。

总的来说,指令微调是提高预训练语言模型的性能和可用性的通用方法。

原文链接:

[2210.11416] Scaling Instruction-Finetuned Language Models

相关推荐
weixin_4462608510 分钟前
解锁安全新维度:Cybersecurity AI (CAI) 助力提升网络安全效率!
人工智能·安全·web安全
dream_home840727 分钟前
构建生产级多模态数据集:视觉与视频模型(参照LLaVA-OneVision-Data和VideoChat2)
图像处理·人工智能·计算机视觉
AI优秘企业大脑27 分钟前
音频库管理在数字媒体中的应用探索
大数据·人工智能
这儿有一堆花1 小时前
从图像到精准文字:基于PyTorch与CTC的端到端手写文本识别实战
人工智能·pytorch·python
聚客AI1 小时前
🌈从实验室到生产线:LLM工程师必须掌握的八大实战技能
人工智能·llm·agent
明天再做行么1 小时前
AI产品经理学习资料
人工智能·产品经理
cetcht88881 小时前
从 “有人值守” 到 “少人运维”:智能巡检机器人重塑配电室管理模式
大数据·运维·人工智能·机器人
阿正的梦工坊1 小时前
介绍 SWE-bench:语言模型能否解决真实世界的 GitHub 问题?
人工智能·语言模型·github
嘀咕博客2 小时前
月匣 - 百度推出的AI情感陪伴与剧情互动应用
人工智能·百度·ai工具
新加坡内哥谈技术2 小时前
Claude Code 的“AI优先”
人工智能