分享|instructionfine-tuning 指令微调是提高LLM性能和泛化能力的通用方法

《生成式AI导论》课程中,李宏毅老师提到一篇关于" instruction fine-tuning" 指令微调的论文:

《Scaling Instruction-Finetuned Language Models》

摘要分享:

事实证明,

在一组以指令形式表达 的数据集上微调 语言模型可以提高模型性能和对看不见的任务的泛化

在本文中,我们探讨了指令微调,特别关注

(1) 扩展任务数量,

(2) 扩展模型大小,以及

(3) 对思维链数据进行微调。

我们发现,具有上述方面的指令微调极大地提高了各种模型类(PaLM、T5、U-PaLM)、提示设置(零样本、少样本、CoT)和评估基准(MMLU、BBH、TyDiQA、MGSM、开放式生成)的性能。

例如,在 1.8K 任务上进行指令微调的 Flan-PaLM 540B 性能大大优于 PALM 540B(平均+9.4%)。Flan-PaLM 540B 在多个基准测试中实现了最先进的性能,例如在五次 MMLU 上达到 75.2%。我们还公开发布了 Flan-T5 检查点,即使与更大的模型(如 PaLM 62B)相比,它也能实现强大的小样本性能。

总的来说,指令微调是提高预训练语言模型的性能和可用性的通用方法。

原文链接:

[2210.11416] Scaling Instruction-Finetuned Language Models

相关推荐
机器之心3 分钟前
刚刚,Grok4跑分曝光:「人类最后考试」拿下45%,是Gemini 2.5两倍,但网友不信
人工智能
蹦蹦跳跳真可爱58918 分钟前
Python----大模型(使用api接口调用大模型)
人工智能·python·microsoft·语言模型
小爷毛毛_卓寿杰20 分钟前
突破政务文档理解瓶颈:基于多模态大模型的智能解析系统详解
人工智能·llm
Mr.Winter`20 分钟前
障碍感知 | 基于3D激光雷达的三维膨胀栅格地图构建(附ROS C++仿真)
人工智能·机器人·自动驾驶·ros·具身智能·环境感知
好开心啊没烦恼30 分钟前
Python 数据分析:numpy,抽提,整数数组索引与基本索引扩展(元组传参)。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy·pandas
磊叔的技术博客36 分钟前
LLM 系列(六):模型推理篇
人工智能·面试·llm
爱分享的飘哥36 分钟前
【V6.0 - 听觉篇】当AI学会“听”:用声音特征捕捉视频的“情绪爽点”
人工智能·音视频
fzyz12342 分钟前
Windows系统下WSL从C盘迁移方案
人工智能·windows·深度学习·wsl
BIYing_Aurora1 小时前
【IPMV】图像处理与机器视觉:Lec13 Robust Estimation with RANSAC
图像处理·人工智能·算法·计算机视觉
数据与人工智能律师1 小时前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链