在Ubuntu上用Llama Factory命令行微调Qwen2.5的简单过程

半年多之前写过一个教程:在Windows上用Llama Factory微调Llama 3的基本操作_llama-factory windows-CSDN博客

如果用命令行做的话,前面的步骤可以参考上面这个博客。安装好环境后, 用自我认知数据集微调Lora模块:data/identity.json,里面的格式也很好理解:

{

"instruction": "你是谁?",

"input": "",

"output": "您好,我是 { {name}},一个由 { {author}} 发明的人工智能助手。我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"

},

可以直接用VS Code将上面的name和author替换,另存为一个文件,并且在data/dataset_info.json增加这个,类似于我这里(另存的文件名为identity_tpri.json):

"identity_tpri": {

"file_name": "identity_tpri.json"

},

将文件examples/train_qlora/llama3_lora_sft_awq.yaml另存为一个文件并且重命名,然后配置对应一下已经下载下来的模型文件(顺便说一句,模型文件可以在:魔搭社区 这里下载,应该速度都很快),我这里是这样修改的(标红的是更新的内容,除了微调数据集和模型位置以及Lora模块位置,需要注意的就是num_train_epochs,之前默认的值是3,经过测试以后太小了):

model

model_name_or_path: /home/quyu/Qwen2.5-7B-Instruct/

trust_remote_code: true

method

stage: sft

do_train: true

finetuning_type: lora

lora_rank: 8

lora_target: all

dataset

dataset: identity_tpri

template: qwen

cutoff_len: 2048

max_samples: 1000

overwrite_cache: true

preprocessing_num_workers: 16

output

output_dir: saves/qwen-7b/lora/sft

logging_steps: 10

save_steps: 500

plot_loss: true

overwrite_output_dir: true

train

per_device_train_batch_size: 1

gradient_accumulation_steps: 8

learning_rate: 1.0e-4

num_train_epochs: 20.0

lr_scheduler_type: cosine

warmup_ratio: 0.1

bf16: true

ddp_timeout: 180000000

eval

val_size: 0.1

per_device_eval_batch_size: 1

eval_strategy: steps

eval_steps: 500

然后运行一下(重命名的文件是qwen_lora.yaml):

bash 复制代码
llamafactory-cli train examples/train_qlora/qwen_lora.yaml

如果显存不够可能会报错(例如训练32B的时候),这个我在后一篇博客里再总结。如果显存够,那么可以直接得到微调后的lora模块,我这里用两个3090训练只需要一分多钟。我们将examples/inference/llama3_lora_sft.yaml复制以后重命名,并且将其内容改为:

model_name_or_path: /home/quyu/Qwen2.5-7B-Instruct

adapter_name_or_path: saves/qwen-7b/lora/sft

template: qwen

infer_backend: huggingface # choices: [huggingface, vllm]

trust_remote_code: true

然后运行(重命名的文件是qwen2_lora.yaml,看自己喜好重命名即可):

bash 复制代码
llamafactory-cli chat examples/inference/qwen2_lora.yaml

然后再问大模型"你是谁?",就可以看到修改之后的效果了。

相关推荐
七月稻草人2 分钟前
CANN ops-nn:AIGC底层神经网络算力的核心优化引擎
人工智能·神经网络·aigc·cann
种时光的人2 分钟前
CANN仓库核心解读:ops-nn打造AIGC模型的神经网络算子核心支撑
人工智能·神经网络·aigc
晚霞的不甘4 分钟前
守护智能边界:CANN 的 AI 安全机制深度解析
人工智能·安全·语言模型·自然语言处理·前端框架
谢璞6 分钟前
中国AI最疯狂的一周:50亿金元肉搏,争夺未来的突围之战
人工智能
池央6 分钟前
CANN 算子生态的深度演进:稀疏计算支持与 PyPTO 范式的抽象层级
运维·人工智能·信号处理
方见华Richard7 分钟前
世毫九实验室(Shardy Lab)研究成果清单(2025版)
人工智能·经验分享·交互·原型模式·空间计算
Maynor9967 分钟前
OpenClaw 玩家必备:用 AI 自动追踪社区最新动态
java·服务器·人工智能
aini_lovee8 分钟前
MATLAB基于小波技术的图像融合实现
开发语言·人工智能·matlab
ujainu17 分钟前
CANN仓库中的AIGC多模态统一抽象工程:昇腾AI软件栈如何用一套接口驾驭图文音视
人工智能·aigc
WooaiJava19 分钟前
AI 智能助手项目面试技术要点总结(前端部分)
javascript·大模型·html5