在Ubuntu上用Llama Factory命令行微调Qwen2.5的简单过程

半年多之前写过一个教程:在Windows上用Llama Factory微调Llama 3的基本操作_llama-factory windows-CSDN博客

如果用命令行做的话,前面的步骤可以参考上面这个博客。安装好环境后, 用自我认知数据集微调Lora模块:data/identity.json,里面的格式也很好理解:

{

"instruction": "你是谁?",

"input": "",

"output": "您好,我是 { {name}},一个由 { {author}} 发明的人工智能助手。我可以回答各种问题,提供实用的建议和帮助,帮助用户完成各种任务。"

},

可以直接用VS Code将上面的name和author替换,另存为一个文件,并且在data/dataset_info.json增加这个,类似于我这里(另存的文件名为identity_tpri.json):

"identity_tpri": {

"file_name": "identity_tpri.json"

},

将文件examples/train_qlora/llama3_lora_sft_awq.yaml另存为一个文件并且重命名,然后配置对应一下已经下载下来的模型文件(顺便说一句,模型文件可以在:魔搭社区 这里下载,应该速度都很快),我这里是这样修改的(标红的是更新的内容,除了微调数据集和模型位置以及Lora模块位置,需要注意的就是num_train_epochs,之前默认的值是3,经过测试以后太小了):

model

model_name_or_path: /home/quyu/Qwen2.5-7B-Instruct/

trust_remote_code: true

method

stage: sft

do_train: true

finetuning_type: lora

lora_rank: 8

lora_target: all

dataset

dataset: identity_tpri

template: qwen

cutoff_len: 2048

max_samples: 1000

overwrite_cache: true

preprocessing_num_workers: 16

output

output_dir: saves/qwen-7b/lora/sft

logging_steps: 10

save_steps: 500

plot_loss: true

overwrite_output_dir: true

train

per_device_train_batch_size: 1

gradient_accumulation_steps: 8

learning_rate: 1.0e-4

num_train_epochs: 20.0

lr_scheduler_type: cosine

warmup_ratio: 0.1

bf16: true

ddp_timeout: 180000000

eval

val_size: 0.1

per_device_eval_batch_size: 1

eval_strategy: steps

eval_steps: 500

然后运行一下(重命名的文件是qwen_lora.yaml):

bash 复制代码
llamafactory-cli train examples/train_qlora/qwen_lora.yaml

如果显存不够可能会报错(例如训练32B的时候),这个我在后一篇博客里再总结。如果显存够,那么可以直接得到微调后的lora模块,我这里用两个3090训练只需要一分多钟。我们将examples/inference/llama3_lora_sft.yaml复制以后重命名,并且将其内容改为:

model_name_or_path: /home/quyu/Qwen2.5-7B-Instruct

adapter_name_or_path: saves/qwen-7b/lora/sft

template: qwen

infer_backend: huggingface # choices: [huggingface, vllm]

trust_remote_code: true

然后运行(重命名的文件是qwen2_lora.yaml,看自己喜好重命名即可):

bash 复制代码
llamafactory-cli chat examples/inference/qwen2_lora.yaml

然后再问大模型"你是谁?",就可以看到修改之后的效果了。

相关推荐
GIOTTO情15 分钟前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
CoderJia程序员甲17 分钟前
GitHub 热榜项目 - 日榜(2025-10-14)
ai·开源·大模型·github·ai教程
阿里云大数据AI技术24 分钟前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
小关会打代码31 分钟前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉
IT小哥哥呀37 分钟前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
机器之心1 小时前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心1 小时前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩1 小时前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan1 小时前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意1 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股