llama-2-7b权重文件转hf格式及模型使用

目录

[1. obtain llama weights](#1. obtain llama weights)

[2. convert llama weights files into hf format](#2. convert llama weights files into hf format)

[3. use llama2 to generate text](#3. use llama2 to generate text)


1. obtain llama weights

(1)登录huggingface官网,搜索llama-2-7b

(2)填写申请表单,VPN挂在US,表单地区选择US,大约10min,请求通过,如下图

(3)点击用户头像来获取token

Because you just need read and download the resource,so token type of 'Read' is engough.

After you access your token,please save it!if not,you have to generate it again.

(4)下载llama-2-7b的权重文件

安装依赖

bash 复制代码
pip install -U huggingface_hub

设置hugging face镜像

bash 复制代码
vim ~/.bashrc
bash 复制代码
export HF_ENDPOINT=https://hf-mirror.com
bash 复制代码
source ~/.bashrc

使用刚刚获取的token下载llama-2-7b的权重文件

bash 复制代码
huggingface-cli download --token hf_*** --resume-download meta-llama/Llama-2-7b --local-dir ./llama-2-7b

下载成功后llama-2-7b权重目录如下图

2. convert llama weights files into hf format

Follow instructions provided by Huggingface to convert it into Huggingface format.

其实就两步:

(1)点击链接,下载转换脚本convert_llama_weights_to_hf.py

(2)执行命令

bash 复制代码
python ./convert_llama_weights_to_hf.py --input_dir /hy-tmp/Llama-2-7b --model_size 7B --output_dir /hy-tmp/llama-2-7b-hf

Maybe you need a long time to solve dependencies version conflicts, be patient!

转换成功后llama-2-7b-hf目录如下图

网上有很多地方会直接提供hf格式的llama模型文件,那我们便无需上述复杂的转换操作,只需下载到实例即可,很简单。

3. use llama2 to generate text

(1)代码内容

python 复制代码
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.cuda.amp import autocast

# 设置环境变量避免显存碎片化
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'

# 清理缓存
torch.cuda.empty_cache()

# 加载Llama-2-7b模型和分词器
model_name = "/hy-tmp/llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype=torch.float16)

# 加载模型到GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)

input_text = "How to learn skiing?"

# 输入文本的编码
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)

# 设置生成文本参数
max_length = 256
temperature = 0.7 
top_k = 50 
top_p = 0.95 

# 使用混合精度加速进行推理
with autocast():
    output = model.generate(
        input_ids,
        max_length=max_length,
        num_return_sequences=1,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        do_sample=True  # 使用采样,避免贪婪生成
    )

# 解码生成的文本
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

print(generated_text)

(2)执行结果

相关推荐
暮小暮14 分钟前
从ChatGPT到智能助手:Agent智能体如何颠覆AI应用
人工智能·深度学习·神经网络·ai·语言模型·chatgpt
七元权21 分钟前
论文阅读-Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·深度学习·计算机视觉·语义分割·弱监督
人类发明了工具1 小时前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
CoovallyAIHub1 小时前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub1 小时前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
什么都想学的阿超1 小时前
【大语言模型 01】注意力机制数学推导:从零实现Self-Attention
人工智能·语言模型·自然语言处理
大千AI助手3 小时前
SWE-bench:真实世界软件工程任务的“试金石”
人工智能·深度学习·大模型·llm·软件工程·代码生成·swe-bench
trigger3333 小时前
大模型的畅享
大模型
重启的码农4 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农4 小时前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络