Python 数据清洗与处理常用方法全解析

在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战。本文总结了多种数据清洗与处理方法:缺失值处理包括删除缺失值、固定值填充、前后向填充以及删除缺失率高的列;重复值处理通过删除或标记重复项解决数据冗余问题;异常值处理采用替换或标记方法控制数据质量;数据类型转换确保数据格式符合分析需求,例如转换为整数或日期类型;文本清洗包括去空格、字符替换及转换大小写等操作。此外,还介绍了数据分组统计、数据分箱与标准化的应用。例如,分组统计可按列求均值,数据分箱能为连续变量赋予分类标签,而归一化则通过压缩数据范围提升模型表现。这些方法能有效提高数据质量与分析效率,是数据科学中不可或缺的能。

缺失值处理

删除缺失值
python 复制代码
df_dropped = df.dropna()
print("\n删除缺失值后:")
print(df_dropped)
用固定值填充缺失值
python 复制代码
df_filled = df.fillna({
    'title': 'Unknown',
    'author': 'Unknown Author',
    'price': df['price'].mean()
})
print("\n填充缺失值后:")
print(df_filled)
前向填充
python 复制代码
df_ffill = df.fillna(method='ffill')
print("\n前向填充缺失值后:")
print(df_ffill)
后向填充
python 复制代码
df_bfill = df.fillna(method='bfill')
print("\n后向填充缺失值后:")
print(df_bfill)
删除缺失率高的列
python 复制代码
df_dropped_cols = df.dropna(axis=1, thresh=len(df) * 0.5)  
print("\n删除缺失率高的列后:")
print(df_dropped_cols)

重复值处理

删除重复值
python 复制代码
df_deduplicated = df.drop_duplicates()
print("\n删除重复值后:")
print(df_deduplicated)
标记重复值
python 复制代码
df['is_duplicate'] = df.duplicated()
print("\n标记重复值后:")
print(df)

异常值处理

替换异常值
python 复制代码
df['price'] = df['price'].apply(lambda x: x if 0 <= x <= 100 else df['price'].mean())
print("\n替换异常值后:")
print(df)
标记异常值
python 复制代码
df['is_outlier'] = df['price'].apply(lambda x: 1 if x < 0 or x > 100 else 0)
print("\n标记异常值后:")
print(df)

数据类型转换

转换为整数类型
python 复制代码
df['price'] = df['price'].astype(int)
print("\n转换为整数后:")
print(df)
转换为日期类型
python 复制代码
df['date'] = pd.to_datetime(df['date'], errors='coerce')
print("\n转换为日期类型后:")
print(df)

文本清洗

去掉两端空格
python 复制代码
df['title'] = df['title'].str.strip()
print("\n去掉两端空格后:")
print(df)
替换特定字符
python 复制代码
df['title'] = df['title'].str.replace('[^a-zA-Z0-9\s]', '', regex=True)
print("\n替换特定字符后:")
print(df)
转换为小写
python 复制代码
df['title'] = df['title'].str.lower()
print("\n转换为小写后:")
print(df)

数据分组统计

按列分组求均值
python 复制代码
grouped = df.groupby('author')['price'].mean()
print("\n按作者分组的平均价格:")
print(grouped)

数据分箱

按价格分箱
python 复制代码
bins = [0, 10, 20, 30]
labels = ['低', '中', '高']
df['price_level'] = pd.cut(df['price'], bins=bins, labels=labels, right=False)
print("\n按价格分箱后:")
print(df)

数据标准化

归一化处理
python 复制代码
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df['price_scaled'] = scaler.fit_transform(df[['price']])
print("\n归一化后的数据:")
print(df)
相关推荐
-曾牛21 分钟前
Git完全指南:从入门到精通版本控制 ------- Git仓库创建 (5)
大数据·网络·git·学习·elasticsearch·个人开发
暴力袋鼠哥1 小时前
基于YOLO11的车牌识别分析系统
python
caihuayuan41 小时前
Redis奇幻之旅(三)1.redis客户端与服务端
java·大数据·sql·spring·课程设计
唐天下文化2 小时前
甜心速达智慧潮流精选超市、即时零售新业态,打造可持续发展商业模式
大数据·人工智能·零售
科技小E3 小时前
5G时代,视频分析设备平台EasyCVR实现通信基站远程安全便捷管控
大数据·网络·人工智能·音视频·安防监控
满怀10153 小时前
【Python进阶】列表:全面解析与实战指南
python·算法
twj_one3 小时前
[ElasticSearch]Suggest查询建议(自动补全&纠错)
大数据·elasticsearch·搜索引擎
King.6244 小时前
从 SQL2API 到 Text2API:开启数据应用开发的新征程
大数据·开发语言·数据库·sql·低代码
小小菜鸟,可笑可笑4 小时前
Python 注释进阶之Google风格
开发语言·python
upp4 小时前
[bug]langchain agent报错Invalid Format: Missing ‘Action Input:‘ after ‘Action:‘
javascript·python·langchain·bug