pytorch线性回归模型预测房价例子

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

# 1. 创建线性回归模型类
class LinearRegressionModel(nn.Module):
    def __init__(self):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(1, 1)  # 1个输入特征,1个输出

    def forward(self, x):
        return self.linear(x)

# 2. 生成训练数据
area = np.array([1000, 1500, 1800, 2400, 3000], dtype=np.float32).reshape(-1, 1)  # 房屋面积(平方英尺)
price = np.array([250000, 300000, 350000, 500000, 600000], dtype=np.float32).reshape(-1, 1)  # 房价

# 标准化房屋面积
area = area / 3000  # 假设最大面积为3000平方英尺

# 转换为 PyTorch 张量
x_train = torch.from_numpy(area)
y_train = torch.from_numpy(price)

# 3. 实例化模型、定义损失函数和优化器
model = LinearRegressionModel()
criterion = nn.MSELoss()  # 均方误差损失函数
optimizer = optim.SGD(model.parameters(), lr=0.001)  # 学习率调低

# 4. 训练模型
epochs = 1000
for epoch in range(epochs):
    # 前向传播
    outputs = model(x_train)
    loss = criterion(outputs, y_train)

    # 反向传播
    optimizer.zero_grad()  # 清零梯度
    loss.backward()  # 计算梯度
    optimizer.step()  # 更新权重

    # 每100次输出一次损失值
    if (epoch + 1) % 100 == 0:
        print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')

# 5. 保存训练好的模型
torch.save(model.state_dict(), 'linear_regression_model.pth')
print("模型已保存!")

# 6. 加载模型并进行预测
loaded_model = LinearRegressionModel()
loaded_model.load_state_dict(torch.load('linear_regression_model.pth'))
loaded_model.eval()  # 设置为评估模式

# 进行预测
new_area = torch.tensor([[2500 / 3000]], dtype=torch.float32)  # 假设新房屋面积为2500平方英尺,标准化处理
predicted_price = loaded_model(new_area)
print(f"Predicted price for area 2500 sq.ft: ${predicted_price.item():,.2f}")
  • 创建模型LinearRegressionModel 是一个简单的线性回归模型,只有一个线性层 (nn.Linear)。
  • 数据准备:我们生成了一个简单的示例数据集,包含房屋面积和房价数据。数据被转换为 PyTorch 张量格式。
  • 模型训练 :使用均方误差损失函数 (MSELoss) 和随机梯度下降优化器 (SGD) 来训练模型。模型在1000个迭代中进行训练,并在每100次迭代后输出损失值。
  • 保存模型 :训练完成后,使用 torch.save 保存模型的参数。
  • 加载模型并进行预测 :使用 torch.load 加载模型参数,并将模型设置为评估模式 (eval)。然后,我们通过模型对一个新的房屋面积值进行预测。
相关推荐
t梧桐树t2 分钟前
spring AI都能做什么
java·人工智能·spring
lpfasd1237 分钟前
AI 时代,编程语言战争会终止吗?
人工智能
WLJT12312312312 分钟前
芯片与电流:点亮生活的科技力量
大数据·人工智能·科技·生活
syounger25 分钟前
德军 SAP 迁移受阻:S4/HANA 系统功能不稳定,全面上线再度推迟
大数据·人工智能
声网27 分钟前
全球首个语音 AI 广告平台问世;Sam Altman 与 Jony Ive:合作新硬件将「如湖畔山间小屋般平静」丨日报
人工智能
Yeats_Liao31 分钟前
CANN Samples(七):视频与流媒体:RTSP与多路输入实战
人工智能·机器学习·音视频
玖日大大37 分钟前
X-AnyLabeling-实践使用AI驱动的图像
人工智能
倔强的石头1061 小时前
Rokid AI眼镜:连接现实与数字的桥梁,探索下一代智能应用开发
人工智能·ai·ar·rokid·ai眼镜
雪不下1 小时前
医用IT技术:CT(3.1)
图像处理·人工智能
咚咚王者1 小时前
人工智能之数据分析 Matplotlib:第一章 简介和安装
人工智能·数据分析·matplotlib