‌马尔可夫决策过程-笔记

【详解+推导!!】马尔可夫决策过程-CSDN博客

MDP是RL的理论基础


‌**马尔可夫决策过程(Markov Decision Process, MDP)是序贯决策的数学模型,用于在系统状态具有马尔可夫性质的环境中模拟智能体可实现的随机性策略与回报** ‌。MDP得名于俄国数学家安德雷·马尔可夫,以纪念其对马尔可夫链的研究。‌

基本概念和要素

MDP基于一组交互对象,即智能体和环境进行构建,所具有的要素包括:

  • ‌**状态(States)**‌:环境的状态集合。
  • ‌**动作(Actions)**‌:智能体在每个状态下可以采取的动作集合。
  • ‌**策略(Policies)**‌:定义了智能体在给定状态下选择动作的方式。
  • ‌**奖励(Rewards)**‌:智能体执行动作后获得的即时奖励。

理论基础和应用场景

MDP的理论基础是马尔可夫链,因此也被视为考虑了动作的马尔可夫模型。在离散时间上建立的MDP被称为"离散时间马尔可夫决策过程",反之则被称为"连续时间马尔可夫决策过程"。MDP存在一些变体,包括部分可观察马尔可夫决策过程、约束马尔可夫决策过程和模糊马尔可夫决策过程。

在机器学习和强化学习中的应用

在应用方面,MDP被用于机器学习中强化学习问题的建模。通过使用动态规划、随机采样等方法,MDP可以求解使回报最大化的智能体策略,并在自动控制、推荐系统等主题中得到应用。

数学表示和计算方法

MDP可以用五元组表示:<S, A, P, R, γ>,其中:

  • S 表示状态集合。
  • A 表示动作集合。
  • P 表示状态转移概率矩阵。
  • R 表示奖励函数。
  • γ 表示折扣因子,范围在 0 到 1 之间。

Bellman等式‌是强化学习中的基础,其基本思想是使用迭代的思想,将状态值函数分解为即时奖励和未来状态值函数的加权和。通过Bellman等式,可以迭代计算每个状态的值函数,从而找到最优策略。

相关推荐
ajsbxi1 小时前
【Java 基础】核心知识点梳理
java·开发语言·笔记
呱呱巨基1 小时前
vim编辑器
linux·笔记·学习·编辑器·vim
新子y1 小时前
【小白笔记】普通二叉树(General Binary Tree)和二叉搜索树的最近公共祖先(LCA)
开发语言·笔记·python
聪明的笨猪猪1 小时前
Java JVM “调优” 面试清单(含超通俗生活案例与深度理解)
java·经验分享·笔记·面试
爱学习的uu2 小时前
CURSOR最新使用指南及使用思路
人工智能·笔记·python·软件工程
YuCaiH2 小时前
Linux文件处理
linux·笔记·嵌入式
Cathy Bryant2 小时前
大模型损失函数(二):KL散度(Kullback-Leibler divergence)
笔记·神经网络·机器学习·数学建模·transformer
qq_398586542 小时前
Threejs入门学习笔记
javascript·笔记·学习
hour_go3 小时前
TCP/IP协议相关知识点
网络·笔记·网络协议·tcp/ip
潘达斯奈基~3 小时前
在使用spark的applyInPandas方法过程中,遇到类型冲突问题如何解决
大数据·笔记