DeepSeek API 的获取与对话示例

代码文件下载:Code

在线链接:Kaggle | Colab

文章目录

注册并获取API

访问 https://platform.deepseek.com/sign_in 进行注册并登录:

新用户注册后将赠送 10 块钱余额,有效期为一个月:

点击左侧的 API keys(或者访问 https://platform.deepseek.com/api_keys),然后点击 创建 API key:

命名,然后点击 创建

与其他平台不同的是,DeepSeek 的 API 仅在创建时显示,你可能需要记录它,点击 复制

环境依赖

命令行执行:

bash 复制代码
pip install openai

设置 API

python 复制代码
import os
os.environ['DEEPSEEK_API_KEY'] = 'your-api-key' # 1

单轮对话

python 复制代码
from openai import OpenAI
import os

def get_response():
    client = OpenAI(
        api_key=os.getenv('DEEPSEEK_API_KEY'), # 1
        base_url="https://api.deepseek.com", # 2
    )
    completion = client.chat.completions.create(
        model="deepseek-chat", # 3
        messages=[
            {'role': 'system', 'content': 'You are a helpful assistant.'},
            {'role': 'user', 'content': '你是谁?'}]
        )
    print(completion.model_dump_json())

get_response()

多轮对话

python 复制代码
from openai import OpenAI
import os

def get_response(messages):
    client = OpenAI(
        api_key=os.getenv('DEEPSEEK_API_KEY'), 
        base_url="https://api.deepseek.com",
    )
    completion = client.chat.completions.create(
        model="deepseek-chat",
        messages=messages
        )
    return completion

messages = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
# 您可以自定义设置对话轮数,当前为3
for i in range(3):
    user_input = input("请输入:")
    
    # 将用户问题信息添加到messages列表中,这部分等价于之前的单轮对话
    messages.append({'role': 'user', 'content': user_input})
    assistant_output = get_response(messages).choices[0].message.content
    
    # 将大模型的回复信息添加到messages列表中,这里是历史记录,保存上下文
    messages.append({'role': 'assistant', 'content': assistant_output})
    print(f'用户输入:{user_input}')
    print(f'模型输出:{assistant_output}')
    print('\n')

流式输出

python 复制代码
from openai import OpenAI
import os

def get_response():
    client = OpenAI(
        api_key=os.getenv("DEEPSEEK_API_KEY"),
        base_url="https://api.deepseek.com",
    )
    completion = client.chat.completions.create(
        model="deepseek-chat",
        messages=[{'role': 'system', 'content': 'You are a helpful assistant.'},
                  {'role': 'user', 'content': '你是谁?'}],
        stream=True,
        # 可选,配置以后会在流式输出的最后一行展示token使用信息
        stream_options={"include_usage": True}
        )
    for chunk in completion:
        print(chunk.model_dump_json())

if __name__ == '__main__':
    get_response()

更换模型

当前使用的是聊天模型(deepseek-chat),如果你想修改为推理模型(deepseek-reasoner),对应修改代码中的 model

diff 复制代码
- completion = client.chat.completions.create(
-     model="deepseek-chat",
-     ...
-     )
    
+ completion = client.chat.completions.create(
+     model="deepseek-reasoner",
+     ...
+     )

推理模型的单轮对话输出示例

观察 reasoning_content 可以捕捉到思考过程。

相关推荐
赋创小助手1 天前
“短小精悍”的边缘AI算力利器:超微SYS-E403-14B-FRN2T服务器评测
服务器·人工智能·科技·ai·架构·边缘计算·1024程序员节
武子康1 天前
DeepSeek-OCR 原理剖析|上下文光学压缩、Gundam 动态分辨率与并发预期 附代码
深度学习·aigc·deepseek
GJGCY1 天前
金融智能体技术解读:十大应用场景与AI Agent架构设计思路
人工智能·经验分享·ai·金融·自动化
胡耀超1 天前
5、服务器互连技术(小白入门版)
服务器·网络·ai·网络拓扑·gpu·pcie·1024程序员节
CoderJia程序员甲1 天前
GitHub 热榜项目 - 日榜(2025-10-23)
ai·开源·大模型·github·ai教程
FlagOS智算系统软件栈1 天前
与创新者同频!与FlagOS共赴开源之约
人工智能·ai·开源
Elastic 中国社区官方博客2 天前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
Tencent_TCB2 天前
Gemini CLI接入CloudBase-AI-Toolkit(MCP)保姆级教程
人工智能·ai·ai编程·云开发
俊哥V2 天前
AI一周事件(2025年10月15日-10月21日)
人工智能·ai
陌晨是陌晨2 天前
飞书多维表格自动化做音视频文案提取,打造素材库工作流,1分钟学会
ai