10 Flink CDC

  • [1. CDC是什么](#1. CDC是什么)
  • [2. CDC 的种类](#2. CDC 的种类)
  • [3. 传统CDC与Flink CDC对比](#3. 传统CDC与Flink CDC对比)
  • [4. Flink-CDC 案例](#4. Flink-CDC 案例)
  • [5. Flink SQL 方式的案例](#5. Flink SQL 方式的案例)

1. CDC是什么

CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

在广义的概念上,只要能捕获数据变更的技术,我们都可以称为 CDC 。通常我们说的 CDC 技术主要面向数据库的变更,是一种用于捕获数据库中数据变更的技术。

CDC 技术应用场景非常广泛:

数据同步,用于备份,容灾;

数据分发,一个数据源分发给多个下游;

数据采集(E),面向数据仓库/数据湖的 ETL 数据集成。

2. CDC 的种类

CDC 主要分为基于查询和基于 Binlog 两种方式,我们主要了解一下这两种之间的区别:

  1. 传统 CDC ETL 分析

  2. 基于 Flink CDC 的 ETL 分析

  3. 基于 Flink CDC 的聚合分析

  4. 基于 Flink CDC 的数据打宽

Flink 社区开发了 flink-cdc-connectors 组件,这是一个可以直接从 MySQL、PostgreSQL 等数据库直接读取全量数据和增量变更数据的 source 组件。

开源地址:https://github.com/ververica/flink-cdc-connectors。

示例代码:

复制代码
import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource;
import com.alibaba.ververica.cdc.debezium.DebeziumSourceFunction;
import com.alibaba.ververica.cdc.debezium.StringDebeziumDeserializationSchema;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.Properties;

public class FlinkCDC {
 public static void main(String[] args) throws Exception {
 //1.创建执行环境
 StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 //2.Flink-CDC 将读取 binlog 的位置信息以状态的方式保存在 CK,如果想要做到断点
续传,需要从 Checkpoint 或者 Savepoint 启动程序
 //2.1 开启 Checkpoint,每隔 5 秒钟做一次 CK
 env.enableCheckpointing(5000L);
 //2.2 指定 CK 的一致性语义
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
 //2.3 设置任务关闭的时候保留最后一次 CK 数据
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckp
ointCleanup.RETAIN_ON_CANCELLATION);
 //2.4 指定从 CK 自动重启策略
 env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 2000L));
 //2.5 设置状态后端
 env.setStateBackend(new FsStateBackend("hdfs://hadoop102:8020/flinkCDC"));
 //2.6 设置访问 HDFS 的用户名
 System.setProperty("HADOOP_USER_NAME", "atguigu");
 //3.创建 Flink-MySQL-CDC 的 Source
 //initial (default): Performs an initial snapshot on the monitored database tables upon 
first startup, and continue to read the latest binlog.
 //latest-offset: Never to perform snapshot on the monitored database tables upon first 
startup, just read from the end of the binlog which means only have the changes since the 
connector was started.
 //timestamp: Never to perform snapshot on the monitored database tables upon first 
startup, and directly read binlog from the specified timestamp. The consumer will traverse the 
binlog from the beginning and ignore change events whose timestamp is smaller than the 
specified timestamp.
 //specific-offset: Never to perform snapshot on the monitored database tables upon 
first startup, and directly read binlog from the specified offset.
 DebeziumSourceFunction<String> mysqlSource = MySQLSource.<String>builder()
 .hostname("hadoop01")
 .port(3306)
 .username("root")
 .password("000000")
 .databaseList("gmall-flink")
 .tableList("gmall-flink.z_user_info") //可选配置项,如果不指定该参数,则会
读取上一个配置下的所有表的数据,注意:指定的时候需要使用"db.table"的方式
 .startupOptions(StartupOptions.initial())
 .deserializer(new StringDebeziumDeserializationSchema())
 .build();
 //4.使用 CDC Source 从 MySQL 读取数据
 DataStreamSource<String> mysqlDS = env.addSource(mysqlSource);
 //5.打印数据
 mysqlDS.print();
 //6.执行任务
 env.execute();
 } 
}
复制代码
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
public class FlinkSQL_CDC {
 public static void main(String[] args) throws Exception {
 //1.创建执行环境
 StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
 env.setParallelism(1);
 StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
 //2.创建 Flink-MySQL-CDC 的 Source
 tableEnv.executeSql("CREATE TABLE user_info (" +
 " id INT," +
 " name STRING," +
 " phone_num STRING" +
 ") WITH (" +
 " 'connector' = 'mysql-cdc'," +
 " 'hostname' = 'hadoop01'," +
 " 'port' = '3306'," +
 " 'username' = 'root'," +
 " 'password' = '000000'," +
 " 'database-name' = 'gmall-flink'," +
 " 'table-name' = 'z_user_info'" +
 ")");
 tableEnv.executeSql("select * from user_info").print();
 env.execute();
 }
}
相关推荐
武子康17 分钟前
大数据-143 ClickHouse 实战MergeTree 分区/TTL、物化视图、ALTER 与 system.parts 全流程示例
大数据·后端·nosql
Hello.Reader19 分钟前
用 Spark Shell 做交互式数据分析从入门到自包含应用
大数据·数据分析·spark
qq_12498707532 小时前
基于hadoop的电商用户行为分析系统(源码+论文+部署+安装)
大数据·hadoop·分布式·毕业设计
电商API_180079052472 小时前
从客户需求到 API 落地:淘宝商品详情批量爬取与接口封装实践
大数据·人工智能·爬虫·数据挖掘
临风赏月3 小时前
Hadoop、Kafka、Flink、Spark、Hive五大组件运维常用操作命令
hadoop·flink·kafka
杨超越luckly3 小时前
HTML应用指南:利用POST请求获取全国爱回收门店位置信息
大数据·前端·python·信息可视化·html
呆呆小金人3 小时前
SQL视图:虚拟表的完整指南
大数据·数据库·数据仓库·sql·数据库开发·etl·etl工程师
梦里不知身是客114 小时前
Spark介绍
大数据·分布式·spark
啊吧怪不啊吧4 小时前
SQL之表的查改(下)
大数据·数据库·sql
猫猫姐姐12 小时前
Flink基于Paimon的实时湖仓解决方案的演进
大数据·flink·湖仓一体