哈夫曼树

哈夫曼树(Huffman Tree)是一种最优的二叉树,常用于数据压缩,如在 Huffman 编码中使用。它是根据字符出现的频率来构造的,频率越高的字符越靠近树的根,频率低的字符则在较深的节点上。其核心思想是通过构建一颗最小堆(或者优先队列)来逐步合并最小的两个节点,直到所有节点都合并成一颗哈夫曼树。

哈夫曼树的构建过程:

  1. 统计频率:首先统计每个字符出现的频率。
  2. 构建最小堆:将每个字符作为一个树的节点插入一个最小堆(优先队列)中。
  3. 合并最小频率的节点:每次从最小堆中取出两个频率最小的节点,创建一个新节点,其频率为这两个节点频率之和。然后将这个新节点插入回最小堆。
  4. 重复步骤3,直到堆中只剩下一个节点,这个节点就是哈夫曼树的根节点
cpp 复制代码
#include <iostream>
#include <queue>
#include <vector>
#include <unordered_map>
#include <string>

using namespace std;

// 哈夫曼树的节点
struct HuffmanNode {
    char ch;              // 存储字符
    int freq;             // 字符的频率
    HuffmanNode* left;    // 左子树
    HuffmanNode* right;   // 右子树

    // 构造函数
    HuffmanNode(char c, int f) : ch(c), freq(f), left(nullptr), right(nullptr) {}

    // 定义优先级队列的比较规则:按频率最小的优先
    struct Compare {
        bool operator()(HuffmanNode* l, HuffmanNode* r) {
            return l->freq > r->freq; // 返回 true 时 l 排在 r 后面
        }
    };
};

// 用递归生成哈夫曼编码
void generateHuffmanCodes(HuffmanNode* root, const string& str, unordered_map<char, string>& huffmanCode) {
    if (root == nullptr)
        return;

    // 如果是叶子节点,保存它的编码
    if (!root->left && !root->right) {
        huffmanCode[root->ch] = str;
    }

    // 遍历左子树和右子树
    generateHuffmanCodes(root->left, str + "0", huffmanCode);
    generateHuffmanCodes(root->right, str + "1", huffmanCode);
}

// 构造哈夫曼树
HuffmanNode* buildHuffmanTree(const unordered_map<char, int>& freq) {
    // 优先队列(最小堆)用于按频率排序
    priority_queue<HuffmanNode*, vector<HuffmanNode*>, HuffmanNode::Compare> minHeap;

    // 创建叶子节点并插入最小堆
    for (const auto& pair : freq) {
        minHeap.push(new HuffmanNode(pair.first, pair.second));
    }

    // 合并节点直到只剩一个节点
    while (minHeap.size() > 1) {
        // 取出两个最小的节点
        HuffmanNode* left = minHeap.top(); minHeap.pop();
        HuffmanNode* right = minHeap.top(); minHeap.pop();

        // 创建一个新的内部节点,频率为左右节点频率之和
        HuffmanNode* node = new HuffmanNode('\0', left->freq + right->freq);
        node->left = left;
        node->right = right;

        // 将新节点插入最小堆
        minHeap.push(node);
    }

    // 最后堆中剩下的节点就是哈夫曼树的根节点
    return minHeap.top();
}

// 打印哈夫曼编码
void printHuffmanCodes(const unordered_map<char, string>& huffmanCode) {
    for (const auto& pair : huffmanCode) {
        cout << pair.first << ": " << pair.second << endl;
    }
}

int main() {
    // 输入字符串
    string text = "this is an example for huffman encoding";

    // 统计每个字符的频率
    unordered_map<char, int> freq;
    for (char c : text) {
        freq[c]++;
    }

    // 构建哈夫曼树
    HuffmanNode* root = buildHuffmanTree(freq);

    // 保存每个字符的哈夫曼编码
    unordered_map<char, string> huffmanCode;

    // 生成哈夫曼编码
    generateHuffmanCodes(root, "", huffmanCode);

    // 打印哈夫曼编码
    printHuffmanCodes(huffmanCode);

    return 0;
}
相关推荐
AlenTech几秒前
198. 打家劫舍 - 力扣(LeetCode)
算法·leetcode·职场和发展
Z1Jxxx4 分钟前
0和1的个数
数据结构·c++·算法
ldccorpora4 分钟前
Chinese News Translation Text Part 1数据集介绍,官网编号LDC2005T06
数据结构·人工智能·python·算法·语音识别
重生之后端学习5 分钟前
21. 合并两个有序链表
java·算法·leetcode·链表·职场和发展
源代码•宸6 分钟前
Leetcode—1266. 访问所有点的最小时间【简单】
开发语言·后端·算法·leetcode·职场和发展·golang
YuTaoShao28 分钟前
【LeetCode 每日一题】712. 两个字符串的最小ASCII删除和——(解法一)记忆化搜索
算法·leetcode·职场和发展
知乎的哥廷根数学学派43 分钟前
基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
古城小栈1 小时前
Rust 丰富&好用的 格式化语法
前端·算法·rust
AuroraWanderll1 小时前
类和对象(六)--友元、内部类与再次理解类和对象
c语言·数据结构·c++·算法·stl