【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙

目录

[1. 梯度基本计算](#1. 梯度基本计算)

[2. 控制梯度计算](#2. 控制梯度计算)

[3. 梯度计算注意](#3. 梯度计算注意)

[4. 小节](#4. 小节)


个人主页:Icomi

专栏地址:PyTorch入门

在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch,我们可以轻松搭建各类神经网络模型,实现从基础到高级的人工智能应用。接下来,就让我们一同走进 PyTorch 的世界,探索神经网络与人工智能的奥秘。本系列为PyTorch入门文章,若各位大佬想持续跟进,欢迎与我交流互关。

咱们已经见识了 PyTorch 为张量封装的众多实用计算函数,这些函数就像我们在数据处理旅程中的得力助手,帮我们解决了不少计算难题。但深度学习的探索之旅永无止境,接下来,我们要踏入一个更为关键且神奇的领域 ------ 自动微分(Autograd)模块。

想象一下,我们构建的神经网络就像一台超级复杂的智能机器,它能从海量的数据中学习规律,做出精准的预测。而在这台 "智能机器" 的运行过程中,参数的调整就如同精细地调校机器的各个零部件,让它能不断优化性能。这时,自动微分(Autograd)模块就如同一位无比精准的 "调校大师",对张量做了进一步的封装,赋予了它们一项极为强大的能力 ------ 自动求导。

自动微分模块可不是一个普通的工具,它可是构成神经网络训练的必要模块,就如同发动机对于汽车的重要性一样。在神经网络的训练过程中,我们可以把它看作是一个幕后英雄,默默地推动着整个网络的优化进程。

具体来说,在神经网络的反向传播过程中,这个 "调校大师" Autograd 模块会基于正向计算的结果对当前的参数进行微分计算。这就好比在我们驾驶一辆汽车时,根据当前行驶的路线和目的地,通过精确计算来调整方向盘的角度和油门的力度。Autograd 模块通过这种微分计算,精确地算出每个参数对最终结果的影响程度,从而实现网络权重参数的更新,让神经网络能够不断学习和进步,变得越来越 "聪明"。

接下来我们要深入学习这个自动微分(Autograd)模块,掌握它的原理和使用方法,这将为我们理解神经网络的训练机制打开一扇关键的大门。

1. 梯度基本计算

我们使用 backward 方法、grad 属性来实现梯度的计算和访问.

python 复制代码
import torch


# 1. 单标量梯度的计算
# y = x**2 + 20
def test01():

    # 定义需要求导的张量
    # 张量的值类型必须是浮点类型
    x = torch.tensor(10, requires_grad=True, dtype=torch.float64)
    # 变量经过中间运算
    f = x ** 2 + 20
    # 自动微分
    f.backward()
    # 打印 x 变量的梯度
    # backward 函数计算的梯度值会存储在张量的 grad 变量中
    print(x.grad)


# 2. 单向量梯度的计算
# y = x**2 + 20
def test02():

    # 定义需要求导张量
    x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)
    # 变量经过中间计算
    f1 = x ** 2 + 20

    # 注意:
    # 由于求导的结果必须是标量
    # 而 f 的结果是: tensor([120., 420.])
    # 所以, 不能直接自动微分
    # 需要将结果计算为标量才能进行计算
    f2 = f1.mean()  # f2 = 1/2 * x

    # 自动微分
    f2.backward()

    # 打印 x 变量的梯度
    print(x.grad)


# 3. 多标量梯度计算
# y = x1 ** 2 + x2 ** 2 + x1*x2
def test03():

    # 定义需要计算梯度的张量
    x1 = torch.tensor(10, requires_grad=True, dtype=torch.float64)
    x2 = torch.tensor(20, requires_grad=True, dtype=torch.float64)

    # 经过中间的计算
    y = x1**2 + x2**2 + x1*x2

    # 将输出结果变为标量
    y = y.sum()

    # 自动微分
    y.backward()

    # 打印两个变量的梯度
    print(x1.grad, x2.grad)


# 4. 多向量梯度计算
def test04():

    # 定义需要计算梯度的张量
    x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)
    x2 = torch.tensor([30, 40], requires_grad=True, dtype=torch.float64)

    # 经过中间的计算
    y = x1 ** 2 + x2 ** 2 + x1 * x2
    print(y)

    # 将输出结果变为标量
    y = y.sum()

    # 自动微分
    y.backward()

    # 打印两个变量的梯度
    print(x1.grad, x2.grad)


if __name__ == '__main__':
    test04()

2. 控制梯度计算

我们可以通过一些方法使得在 requires_grad=True 的张量在某些时候计算不进行梯度计算。

python 复制代码
import torch


# 1. 控制不计算梯度
def test01():

    x = torch.tensor(10, requires_grad=True, dtype=torch.float64)
    print(x.requires_grad)

    # 第一种方式: 对代码进行装饰
    with torch.no_grad():
        y = x ** 2
    print(y.requires_grad)

    # 第二种方式: 对函数进行装饰
    @torch.no_grad()
    def my_func(x):
        return x ** 2
    print(my_func(x).requires_grad)


    # 第三种方式
    torch.set_grad_enabled(False)
    y = x ** 2
    print(y.requires_grad)


# 2. 注意: 累计梯度
def test02():

    # 定义需要求导张量
    x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)

    for _ in range(3):

        f1 = x ** 2 + 20
        f2 = f1.mean()

        # 默认张量的 grad 属性会累计历史梯度值
        # 所以, 需要我们每次手动清理上次的梯度
        # 注意: 一开始梯度不存在, 需要做判断
        if x.grad is not None:
            x.grad.data.zero_()

        f2.backward()
        print(x.grad)


# 3. 梯度下降优化最优解
def test03():

    # y = x**2
    x = torch.tensor(10, requires_grad=True, dtype=torch.float64)

    for _ in range(5000):

        # 正向计算
        f = x ** 2

        # 梯度清零
        if x.grad is not None:
            x.grad.data.zero_()

        # 反向传播计算梯度
        f.backward()

        # 更新参数
        x.data = x.data - 0.001 * x.grad

        print('%.10f' % x.data)


if __name__ == '__main__':
    test01()
    test02()
    test03()

3. 梯度计算注意

当对设置 requires_grad=True 的张量使用 numpy 函数进行转换时, 会出现如下报错:

Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.

此时, 需要先使用 detach 函数将张量进行分离, 再使用 numpy 函数.

注意: detach 之后会产生一个新的张量, 新的张量作为叶子结点,并且该张量和原来的张量共享数据, 但是分离后的张量不需要计算梯度。

python 复制代码
import torch


# 1. detach 函数用法
def test01():

    x = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)

    # Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.
    # print(x.numpy())  # 错误
    print(x.detach().numpy())  # 正确


# 2. detach 前后张量共享内存
def test02():

    x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)

    # x2 作为叶子结点
    x2 = x1.detach()

    # 两个张量的值一样: 140421811165776 140421811165776
    print(id(x1.data), id(x2.data))
    x2.data = torch.tensor([100, 200])
    print(x1)
    print(x2)

    # x2 不会自动计算梯度: False
    print(x2.requires_grad)


if __name__ == '__main__':
    test01()
    test02()

4. 小节

本小节主要讲解了 PyTorch 中非常重要的自动微分模块的使用和理解。我们对需要计算梯度的张量需要设置 requires_grad=True 属性,并且需要注意的是梯度是累计的,在每次计算梯度前需要先进行梯度清零。

相关推荐
车载诊断技术2 分钟前
基于新一代电子电器架构的SOA服务设计方法
人工智能·架构·汽车·计算机外设·ecu故障诊断指南
南玖yy2 分钟前
C语言:数组的介绍与使用
c语言·开发语言·算法
Luzem03194 分钟前
使用朴素贝叶斯对自定义数据集进行分类
人工智能·机器学习
小菜鸟博士5 分钟前
手撕Vision Transformer -- Day1 -- 基础原理
人工智能·深度学习·学习·算法·面试
米码收割机16 分钟前
【python】tkinter实现音乐播放器(源码+音频文件)【独一无二】
开发语言·python·pygame
找方案19 分钟前
智慧城市(城市大脑)建设方案
人工智能·智慧城市·城市大脑
老艾的AI世界25 分钟前
AI定制祝福视频,广州塔、动态彩灯、LED表白,直播互动新玩法(附下载链接)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·ai视频·ai视频生成·ai视频制作
星如雨グッ!(๑•̀ㅂ•́)و✧27 分钟前
Java NIO全面详解
java·python·nio
笛柳戏初雪31 分钟前
Python中的函数(下)
开发语言·python
码界筑梦坊1 小时前
基于Django的个人博客系统的设计与实现
后端·python·django·毕业设计