使用朴素贝叶斯对自定义数据集进行分类

准备自定义数据集

首先,需要一个自定义数据集来进行分类。创建一个简单的二维数据集,其中每个样本有两个特征,并且属于两个类别之一。

python 复制代码
import numpy as np
import pandas as pd

# 创建自定义数据集
np.random.seed(42)
num_samples = 100

# 生成特征数据
X = np.random.rand(num_samples, 2)

# 生成标签数据(0或1)
y = np.where(X[:, 0] + X[:, 1] > 1, 1, 0)

# 将数据转换为DataFrame以便查看
data = pd.DataFrame(X, columns=['Feature1', 'Feature2'])
data['Label'] = y

print(data.head())

在这个数据集中,Feature1Feature2是特征,Label是类别标签(0或1)。

使用朴素贝叶斯进行分类

接下来,将使用scikit-learn库中的朴素贝叶斯分类器来对数据集进行分类。这里使用高斯朴素贝叶斯,因为它适用于连续特征。

python 复制代码
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化高斯朴素贝叶斯分类器
gnb = GaussianNB()

# 训练模型
gnb.fit(X_train, y_train)

# 进行预测
y_pred = gnb.predict(X_test)

# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.4f}')

# 打印分类报告
print(classification_report(y_test, y_pred))
4. 结果分析

运行上述代码后,将得到模型的准确率和分类报告。分类报告包括精确度(precision)、召回率(recall)、F1分数(F1-score)等指标。

  • 准确率:正确预测的样本数占总样本数的比例。
  • 精确度:被预测为正类的样本中实际为正类的比例。
  • 召回率:实际为正类的样本中被正确预测为正类的比例。
  • F1分数:精确度和召回率的调和平均数,用于综合评估模型性能。
相关推荐
天涯海风25 分钟前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs2 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java2 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV3 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
Black_Rock_br3 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
☺����3 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine4 小时前
机器学习——数据清洗
人工智能·机器学习
一车小面包4 小时前
逻辑回归 从0到1
算法·机器学习·逻辑回归
小猿姐4 小时前
KubeBlocks AI:AI时代的云原生数据库运维探索
数据库·人工智能·云原生·kubeblocks
算法_小学生4 小时前
循环神经网络(RNN, Recurrent Neural Network)
人工智能·rnn·深度学习