使用朴素贝叶斯对自定义数据集进行分类

准备自定义数据集

首先,需要一个自定义数据集来进行分类。创建一个简单的二维数据集,其中每个样本有两个特征,并且属于两个类别之一。

python 复制代码
import numpy as np
import pandas as pd

# 创建自定义数据集
np.random.seed(42)
num_samples = 100

# 生成特征数据
X = np.random.rand(num_samples, 2)

# 生成标签数据(0或1)
y = np.where(X[:, 0] + X[:, 1] > 1, 1, 0)

# 将数据转换为DataFrame以便查看
data = pd.DataFrame(X, columns=['Feature1', 'Feature2'])
data['Label'] = y

print(data.head())

在这个数据集中,Feature1Feature2是特征,Label是类别标签(0或1)。

使用朴素贝叶斯进行分类

接下来,将使用scikit-learn库中的朴素贝叶斯分类器来对数据集进行分类。这里使用高斯朴素贝叶斯,因为它适用于连续特征。

python 复制代码
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 初始化高斯朴素贝叶斯分类器
gnb = GaussianNB()

# 训练模型
gnb.fit(X_train, y_train)

# 进行预测
y_pred = gnb.predict(X_test)

# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.4f}')

# 打印分类报告
print(classification_report(y_test, y_pred))
4. 结果分析

运行上述代码后,将得到模型的准确率和分类报告。分类报告包括精确度(precision)、召回率(recall)、F1分数(F1-score)等指标。

  • 准确率:正确预测的样本数占总样本数的比例。
  • 精确度:被预测为正类的样本中实际为正类的比例。
  • 召回率:实际为正类的样本中被正确预测为正类的比例。
  • F1分数:精确度和召回率的调和平均数,用于综合评估模型性能。
相关推荐
Kakaxiii8 分钟前
【2025.8 npj】图检索增强的大型语言模型用于面部表型相关的罕见遗传疾病
人工智能·语言模型·自然语言处理
程序员小嬛26 分钟前
(TETCI 2024) 从 U-Net 到 Transformer:即插即用注意力模块解析
人工智能·深度学习·机器学习·transformer
SEO_juper1 小时前
生成式引擎优化(GEO)终极指南:优化品牌在对话式AI中的呈现与推荐
人工智能·chatgpt·seo·geo·数字营销
小程故事多_801 小时前
AI Agent进阶架构:用渐进式披露驯服复杂性
人工智能·架构
人工智能AI技术2 小时前
【Agent从入门到实践】10 决策模块:Agent如何“思考问题”
人工智能
qq_527887873 小时前
联邦经典算法Fedavg实现
人工智能·深度学习
天天讯通3 小时前
数据公司与AI五大主流合作模式
人工智能
Clarence Liu3 小时前
AI Agent开发(2) - 深入解析 A2A 协议与 Go 实战指南
开发语言·人工智能·golang
综合热讯3 小时前
AUS GLOBAL 荣耀赞助 2026 LIL TOUR 高尔夫嘉年华
人工智能
小饼干超人3 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习