python学opencv|读取图像(五十四)使用cv2.blur()函数实现图像像素均值处理

【1】引言

前序学习进程中,对图像的操作均基于各个像素点上的BGR值不同而展开。

对于彩色图像,每个像素点上的BGR值为三个整数,因为是三通道图像;对于灰度图像,各个像素上的BGR值是一个整数,因为这是单通道图像。

如果对这部分内容暂时回忆不起来,可以通过链接回忆:

python学opencv|读取图像(九)用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客

python学opencv|读取图像(十)用numpy创建彩色图像_cv2 通过numpy创建图像-CSDN博客

不过实际追溯下来,图像的大小确定后,像素就确定了,真正操作的都是像素点上的BGR值。

所以,在前序的图像叠加效果原理追溯中,获得叠加效果的根本原因都是因为各个函数执行了对BGR值的运算操作:

python学opencv|读取图像(四十四)原理探究:bitwise_and()函数实现图像按位与运算-CSDN博客

按位计算过程是非常详细的图像叠加过程,如果只想对单张图像操作,有时候可以通过直接修改单张图像的BGR值实现图像调整。

本次文章就先从最简单的开始:通过调用cv2.blur()函数,把各个像素点的BGR值取平均值的方法,实现图像的色彩调整。

【2】官网教程

点击下方链接,直达cv2.blur()函数的官网页面:

OpenCV: Image Filtering

cv2.blur()函数的官网页面的解释为:

++图1 cv2.blur()函数的官网页面++

相应的,cv2.blur()函数的参数解释为:

void cv::blur (

InputArray src, #输入图像

OutputArray dst, #输出图像

Size ksize, #计算图像均值像素核大小

Point anchor = Point(-1,-1), #图像像素核锚点,会自动计算,为可选参数

int borderType = BORDER_DEFAULT ) #可选参数,边界样式,为可选参数

【3】代码测试

首先是引入模块和图像:

python 复制代码
import cv2 as cv  # 引入CV模块

# 读取图片
srcm = cv.imread('srcx.png')  # 读取图像srcx.png

然后对图像做均值计算:

python 复制代码
#均值计算
src1 = cv.blur(srcm,(3,3))  # 图像取平均值,像素核大小为(3,3)
src2 = cv.blur(srcm,(5,5))  # 图像取平均值,像素核大小为(5,5)
src3 = cv.blur(srcm,(7,7))  # 图像取平均值,像素核大小为(7,7)

然后显示和保存图像:

python 复制代码
# 显示结果
cv.imshow('srcm ', srcm)
cv.imshow('src1 ', src1)
cv.imshow('src2 ', src2)
cv.imshow('src3 ', src3)
cv.imwrite('src1.png',src1)
# 窗口控制
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行相关的图像有:

++图2 初始图像srcx.png++

++++

++图3 均值图像src1.png 像素核(3,3)++

++++

++图4 均值图像src2.png 像素核(5,5)++

++++

++图5 均值图像src3.png 像素核(7,7)++

由图2到图5可见,随着像素核的增大,图像越来越模糊。这提醒我们,控制像素核的大小,可以进一步控制图像的模糊程度。

【4】细节说明

像素核使用奇数大小会比较好,因为奇数大小会在最中间围成一个方格,这个方格就是核心方格,均值计算的值直接赋给这个核心方格就可以。

【5】总结

掌握了python+opencv实现调用cv2.blur()函数实现图像BGR值平均处理的技巧。

相关推荐
数据智能老司机19 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机20 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机20 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机20 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i20 小时前
drf初步梳理
python·django
每日AI新事件20 小时前
python的异步函数
python
这里有鱼汤21 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python
databook1 天前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室1 天前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
倔强青铜三1 天前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试