AP单类平均准确率

复制代码
        P_true   N_true
P_pred    TP      Fp
N_pred    FN      TN
           P       N
  1. TP(真正样本,与真实框IoU大于阈值的框) FP(假正样本,与真实框IoU小于阈值的框) TN(真负样本,背景) FN(假负样本,没有检测出的正样本)
  2. IoU:(A and B)/(A or B) A与B的交集除以A与B的并集
  3. precision:准确率,查全率。TP/(TP+FP)= TP/num_pred,数值越大,说明FP数量越少,准确率越高,但是没有考虑FN(可能有漏检)。
  4. recall:召回率,查准率。TP/(TP+FN)= TP/num_sample,数值越大,说明被检测到的正样本越多,效果越好,但是没有考虑FP(如果把背景也判断成前景,则效果不好)。
  5. F score:几何平均分,(BB+1)PR/(BBP+R),B用来调节PR的权重,当B=1,F1 score。 是precision和recall的加权,考虑两个评价指标的优劣。precision和recall是此消彼长的关系。
  6. Average Precision:单类平均准确率。是PR曲线的面积。
python 复制代码
样本     置信度       正负样本    累计tp   累计fp   precision   recall
1 		 0.97 		 True 		 1 		 0 		 1.0 		 0.1
2 		 0.87 		 True 		 2 		 0 		 1.0 		 0.2
3 		 0.84 		 True 		 3 		 0 		 1.0 		 0.3
4 		 0.8 		 True 		 4 		 0 		 1.0 		 0.4
5 		 0.69 		 False 		 4 		 1 		 0.8 		 0.4
6 		 0.58 		 True 		 5 		 1 		 0.83 		 0.5
7 		 0.43 		 False 		 5 		 2 		 0.71 		 0.5
8 		 0.19 		 True 		 6 		 2 		 0.75 		 0.6
9 		 0.02 		 False 		 6 		 3 		 0.67 		 0.6
10 		 0.03 		 False 		 6 		 4 		 0.6 		 0.6
python 复制代码
import numpy as np
img_ids = None
class_recs = None
BB = None

nd = len(img_ids)
thred = 0.5
npos = 100
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
  R = class_recs[img_ids[d]]
  bb = BB[d,:].astype(float)      # 按照置信度排好序
  idx = -np.inf
  BBGT = R['bbox'].astype(float)  # 真实框
  if BBGT.size>0:
      # 计算IoU
      x1y1 = np.maximum(BBGT[:,:2],bb[:2])
      x2y2 = np.maximum(BBGT[:, 2:], bb[2:])
      wh = np.maximum(x2y2-x1y1+1,0)
      inters = wh[0]*wh[1]
      bb_areas = (bb[2]-bb[0]+1.0)*(bb[3]-bb[1]+1.0)
      BBGT_ares = (BBGT[:,2]-BBGT[:,0]+1.0)*(BBGT[:,3]-BBGT[:,1]+1.0)
      ious = inters/(bb_areas+BBGT_ares-inters)
      iou = np.max(ious)
      idx = np.argmax(ious)

  if idx>thred:
      if not R['difficult'][idx]:
          if not R['det'][idx]:
              tp[d]=1.
              R['det'][idx]=1
          else:
              fp[d] = 1.
  else:
      fp[d] = 1.

fp = np.cumum(fp)
tp = np.cumum(tp)
rec = tp/float(npos)
prec = tp/np.maximum(tp+fp,np.finfo(np.float64).eps)

def voc_ap(rec,prec):
  mrec = np.concatenate(([0.],rec,[1.]))
  mpre = np.concatenate(([0.],prec,[0.]))

  for i in range(mpre.size-1,0,-1):
      mpre[i-1]=np.maximum(mpre[i-1],mpre[i])

  i = np.where(mpre[1:] != mpre[:-1])[0]
  ap = np.sum((mrec[i+1]-mrec[i])*mrec[i+1])
  return ap
相关推荐
叶凡要飞5 小时前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统
FL162386312911 小时前
无人机视角河道多目标垃圾检测数据集VOC+YOLO格式1736张6类别
yolo·无人机
XIAO·宝12 小时前
深度学习------YOLOV1和YOLOV2
人工智能·深度学习·yolo
禾昂.14 小时前
从 YOLO V1 到 V2:目标检测领域的一次关键技术迭代
yolo·目标检测·目标跟踪
Python图像识别1 天前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
OAFD.1 天前
YOLOv3 详解:核心改进、网络架构与目标检测实践
网络·yolo·目标检测
一百天成为python专家1 天前
python爬虫入门(小白五分钟从入门到精通)
开发语言·爬虫·python·opencv·yolo·计算机视觉·正则表达式
JANGHIGH2 天前
YOLO系列——OpenCV DNN模块在YOLOv11检测物体时输出的边界框坐标问题
opencv·yolo·dnn
宁若风2 天前
如何将yolov5模型部署到RK3588开发板上
yolo
尤超宇2 天前
YOLOv3 目标检测算法核心技术
算法·yolo·目标检测