自定义数据集 ,使用朴素贝叶斯对其进行分类

数据集定义:

  • data 列表包含了文本样本及其对应的情感标签。每个元素是一个元组,第一个元素是文本,第二个元素是标签。

特征提取:

  • 使用 CountVectorizer 将文本转换为词频向量。 fit_transform 方法在训练数据上拟合向量器并进行转换。

模型训练:

  • 初始化 MultinomialNB 模型,这是适用于离散数据(如词频)的朴素贝叶斯分类器。

  • 使用 fit 方法在提取的特征和标签上训练模型。

预测:

  • 对新的文本数据,先使用 vectorizer.transform 方法将其转换为特征向量,然后使用训练好的模型进行预测。

评估:

  • 这里简单地假设了新文本的真实标签,使用 accuracy_score 计算预测准确率。在实际应用中,应使用独立的测试集来评估模型性能。

import numpy as np

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

自定义数值型数据集

X = np.array([

1, 2\], \[2, 3\], \[3, 4\], \[4, 5

])

y = np.array([0, 0, 1, 1])

初始化并训练高斯朴素贝叶斯模型

clf = GaussianNB()

clf.fit(X, y)

新数据进行预测

new_X = np.array([

1.5, 2.5\], \[3.5, 4.5

])

predictions = clf.predict(new_X)

输出预测结果

for new_data, pred in zip(new_X, predictions):

print(f"Data: {new_data}, Prediction: {pred}")

假设我们有真实标签用于计算准确率(这里只是示例,实际应用中需有真实测试集标签)

true_labels = [0, 1]

accuracy = accuracy_score(true_labels, predictions)

print(f"Accuracy: {accuracy}")

相关推荐
wait a minutes2 小时前
【自动驾驶】8月 端到端自动驾驶算法论文(arxiv20250819)
人工智能·机器学习·自动驾驶
聚客AI3 小时前
深度拆解AI大模型从训练框架、推理优化到市场趋势与基础设施挑战
图像处理·人工智能·pytorch·深度学习·机器学习·自然语言处理·transformer
RaymondZhao3413 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng113313 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
强盛小灵通专卖员18 小时前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
计算机sci论文精选19 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
Christo320 小时前
SIGKDD-2023《Complementary Classifier Induced Partial Label Learning》
人工智能·深度学习·机器学习
JXL186021 小时前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉21 小时前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
点云SLAM21 小时前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库