自定义数据集 ,使用朴素贝叶斯对其进行分类

数据集定义:

  • data 列表包含了文本样本及其对应的情感标签。每个元素是一个元组,第一个元素是文本,第二个元素是标签。

特征提取:

  • 使用 CountVectorizer 将文本转换为词频向量。 fit_transform 方法在训练数据上拟合向量器并进行转换。

模型训练:

  • 初始化 MultinomialNB 模型,这是适用于离散数据(如词频)的朴素贝叶斯分类器。

  • 使用 fit 方法在提取的特征和标签上训练模型。

预测:

  • 对新的文本数据,先使用 vectorizer.transform 方法将其转换为特征向量,然后使用训练好的模型进行预测。

评估:

  • 这里简单地假设了新文本的真实标签,使用 accuracy_score 计算预测准确率。在实际应用中,应使用独立的测试集来评估模型性能。

import numpy as np

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

自定义数值型数据集

X = np.array([

[1, 2],

[2, 3],

[3, 4],

[4, 5]

])

y = np.array([0, 0, 1, 1])

初始化并训练高斯朴素贝叶斯模型

clf = GaussianNB()

clf.fit(X, y)

新数据进行预测

new_X = np.array([

[1.5, 2.5],

[3.5, 4.5]

])

predictions = clf.predict(new_X)

输出预测结果

for new_data, pred in zip(new_X, predictions):

print(f"Data: {new_data}, Prediction: {pred}")

假设我们有真实标签用于计算准确率(这里只是示例,实际应用中需有真实测试集标签)

true_labels = [0, 1]

accuracy = accuracy_score(true_labels, predictions)

print(f"Accuracy: {accuracy}")

相关推荐
金融OG2 小时前
98.2 AI量化开发:基于DeepSeek打造个人专属金融消息面-AI量化分析师(理论+全套Python代码)
人工智能·python·算法·机器学习·数学建模·金融
SUNX-T6 小时前
【机器学习理论】朴素贝叶斯网络
人工智能·机器学习·概率论
爱研究的小牛8 小时前
讯飞智作 AI 配音技术浅析(二):深度学习与神经网络
人工智能·深度学习·神经网络·机器学习·aigc
灵封~9 小时前
自定义数据集 使用paddlepaddle框架实现逻辑回归
机器学习
智能汽车人9 小时前
自动驾驶---两轮自行车的自主导航
人工智能·机器学习·自动驾驶
Shockang9 小时前
《Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow》第一章读书笔记
机器学习·scikit-learn·机器学习实战案例·hands-on ml·ai避坑指南
和小潘一起学AI15 小时前
机器学习--2.多元线性回归
笔记·算法·机器学习
知识鱼丸16 小时前
自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
机器学习·paddlepaddle