记忆化搜索和动态规划 --最长回文子串为例

记忆化搜索

记忆化搜索是一种优化递归算法的方法,通过将已经计算过的子问题的结果存储起来(通常使用哈希表或数组),避免重复计算相同的子问题。

本质上是通过缓存中间结果来减少计算的重复性。

动态规划

动态规划是通过将问题分解成子问题来解决的,它通常通过表格化的方式(自底向上)来存储子问题的解,以便在需要时能够快速访问。

动态规划的核心思想是通过自底向上的方式来解决问题,通常使用一个数组或表格来存储每个子问题的解,从而避免了递归的重复计算。

二者区别与联系

记忆化搜索和动态规划的区别,主要在于计算的顺序。

记忆化搜索通常是自顶向下的递归方式,在递归中检查子问题是否已经计算过,并存储结果。

动态规划通常是自底向上的方式,逐步计算所有子问题,并存储所有的中间结果,最终得到问题的解。

两者的时间复杂度是相同的,都是 O(n),因为两者都避免了重复计算子问题。

例题

最长回文子串 -力扣

记忆化搜索解答:

复制代码
class Solution {
public:
    int dp[1000][1000];
    std::string ss;
    bool judge(int l, int r) {
        if (dp[l][r] != -1) {
            return dp[l][r];
        }

        if (ss[l] == ss[r]) {
            if (r - l > 1) {
                if (dp[l + 1][r - 1] == -1) {
                    dp[l][r] = judge(l + 1, r - 1);
                } else {
                    dp[l][r] = dp[l + 1][r - 1];
                }
            } else {
                dp[l][r] = 1;
            }
        } else {
            dp[l][r] = 0;
        }
        return dp[l][r];
    }

    std::string longestPalindrome(std::string s) {
        memset(dp,-1,sizeof(dp));
        int len = s.length();
        ss = s;
        int res = 0;
        int l = 0;

        for (int i = 0; i < len; i++) {
            for (int j = i; j < len; j++) {
                dp[i][j] = judge(i, j);
                if (dp[i][j] == 1 && j - i > res) {
                    res = j - i;
                    l = i;
                }
            }
        }

        return s.substr(l, res + 1);
    }
};

动态规划解答

复制代码
class Solution {
public:
    std::string longestPalindrome(std::string s) {
        int len = s.length();
        bool dp[1000][1000];

        memset(dp,false,sizeof(dp));

        for(int i = len - 1; i >= 0; i--){
            for(int j = i; j < len; j++){
                if(s[i] != s[j]){
                    dp[i][j] = false;
                }
                else{
                    if(i == j){
                        dp[i][j] = true;
                    }
                    else{
                        if(j - i == 1){
                            dp[i][j] = true;
                        }
                        else{
                            dp[i][j] = dp[i+1][j-1];
                        }
                    }
                }
            }
        }
        int res = 0;
        int l = 0;

        for(int i = 0; i < len; i++){
            for(int j = i; j < len; j++){
                if(dp[i][j] == true){
                    if(res < j - i){
                        res = j - i;
                        l = i;
                    }
                }
            }
        }

        return s.substr(l,res + 1);
    }

};

由于函数调用的原因,使用递归的记忆化搜索算法的时间会稍微久一点

相关推荐
LYFlied12 小时前
【每日算法】LeetCode 1143. 最长公共子序列
前端·算法·leetcode·职场和发展·动态规划
长安er13 小时前
LeetCode 20/155/394/739/84/42/单调栈核心原理与经典题型全解析
数据结构·算法·leetcode·动态规划·
MarkHD13 小时前
智能体在车联网中的应用:第28天 深度强化学习实战:从原理到实现——掌握近端策略优化(PPO)算法
算法
能源系统预测和优化研究14 小时前
【原创代码改进】考虑共享储能接入的工业园区多类型负荷需求响应经济运行研究
大数据·算法
yoke菜籽14 小时前
LeetCode——三指针
算法·leetcode·职场和发展
小高不明14 小时前
前缀和一维/二维-复习篇
开发语言·算法
bin915315 小时前
当AI优化搜索引擎算法:Go初级开发者的创意突围实战指南
人工智能·算法·搜索引擎·工具·ai工具
曹牧16 小时前
Java:Math.abs()‌
java·开发语言·算法
CoovallyAIHub16 小时前
纯视觉的终结?顶会趋势:不会联觉(多模态)的CV不是好AI
深度学习·算法·计算机视觉
CoovallyAIHub17 小时前
一文读懂大语言模型家族:LLM、MLLM、LMM、VLM核心概念全解析
深度学习·算法·计算机视觉