[250204] Mistral Small 3:小巧、快速、强大 | asdf 0.16.0 发布:Golang 重写带来性能飞跃

目录

    • [Mistral AI 发布开源模型 Mistral Small 3:小巧、快速、强大](#Mistral AI 发布开源模型 Mistral Small 3:小巧、快速、强大)
    • [asdf 0.16.0 版本发布:Golang 重写带来性能飞跃!](#asdf 0.16.0 版本发布:Golang 重写带来性能飞跃!)

Mistral AI 发布开源模型 Mistral Small 3:小巧、快速、强大

法国人工智能初创公司 Mistral AI 发布了最新的开源模型 Mistral Small 3,这是一个基于 Apache 2.0 许可证的 240 亿参数模型,主打低延迟和高性能。尽管体积小巧,Mistral Small 3 的性能却堪比更大的模型,例如 Llama 3.3 70B 或 Qwen 32B,并且可以作为闭源专有模型(如 GPT4o-mini)的优秀开源替代品。其速度更是比 Llama 3.3 70B instruct 快 3 倍以上,同时在 MMLU 基准测试中达到了 81% 的准确率 ,每秒可生成 150 个 token,是同类模型中效率最高的。

主要亮点:

  • Apache 2.0 许可证:
    允许用户自由下载、修改和使用,推动开源社区的创新。
  • 低延迟、高性能:
    参数量仅 240 亿,却能达到与 700 亿参数模型相当的性能,并且速度更快,更适合本地部署。
  • 强大的指令遵循能力:
    经过指令微调,Mistral Small 3 在代码、数学、常识和指令遵循等基准测试中表现出色,与 GPT4o-mini 等专有模型竞争。
  • 开源预训练和指令微调版本:
    提供预训练和指令微调两种版本,方便用户根据需求选择和定制。
  • 多平台支持:
    Hugging Face、Ollama、Kaggle、Together AI 和 Fireworks AI 等平台均已上线,未来还将支持 NVIDIA NIM、AWS Sagemaker、Groq、Databricks 和 Snowflake 等。

性能数据:

  • MMLU 准确率: 超过 81%
  • Token 生成速度: 150 tokens/s
  • 与 Llama 3.3 70B instruct 相比,速度提升 3 倍以上。
  • 在多项基准测试中,与 Qwen2.5-32B-Instruct、Llama-3.3-70B-Instruct 和 Gemma-2-27B-IT 等模型表现相当甚至更优。
  • 第三方评估显示,在超过 1000 个代码和通用提示的测试中,Mistral Small 3 的表现优于其他模型。

适用场景:

  • 快速响应的对话助手
  • 低延迟函数调用
  • 微调以创建特定领域的专家模型
  • 本地推理,尤其适用于处理敏感信息

Mistral AI 的开源承诺:

Mistral AI 重申了对通用模型使用 Apache 2.0 许可证的承诺,逐步放弃 MRL 许可证。这意味着未来的模型将更加开放,方便社区使用和贡献。同时,Mistral AI 也将继续提供商业模型,以满足企业对特定功能 的需求。

来源:

https://mistral.ai/news/mistral-small-3/

asdf 0.16.0 版本发布:Golang 重写带来性能飞跃!

asdf 发布了 0.16.0 版本,这是一个具有里程碑意义的版本,因为它使用 Golang 完全重写了核心代码!

主要改进:

  • 性能提升:
    Golang 重写带来了显著的性能提升,使得版本管理操作更加流畅快捷。
  • 代码简化:
    新的代码库更加简洁易懂,方便开发者理解和贡献。
  • 易于维护:
    Golang 的特性使得代码库更易于维护,有利于项目的长期发展。

需要注意的重大变更:

由于语言的改变以及一些简化和改进用户体验的需求,0.16.0 版本引入了一些重大变更 ,可能会影响现有用户的升级过程。强烈建议用户在升级前仔细阅读官方的升级指南。 为了方便用户,0.16.0 版本的 Bash 代码中添加了警告信息,指导用户参考升级指南进行升级。

来源:

https://github.com/asdf-vm/asdf/releases/tag/v0.16.0

更多内容请查阅 : blog-250204

相关推荐
fzyz1233 分钟前
Windows系统下WSL从C盘迁移方案
人工智能·windows·深度学习·wsl
BIYing_Aurora6 分钟前
【IPMV】图像处理与机器视觉:Lec13 Robust Estimation with RANSAC
图像处理·人工智能·算法·计算机视觉
数据与人工智能律师12 分钟前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
小黄编程快乐屋18 分钟前
「源力觉醒 创作者计划」_文心 4.5 开源模型玩出花——教育场景下 Scratch 积木自动化生成的部署实践与优化
开源
CHANG_THE_WORLD24 分钟前
封装一个png的编码解码操作
图像处理·人工智能·计算机视觉
赛丽曼37 分钟前
Assistant API的原理及应用
人工智能·chatgpt
Yo_Becky1 小时前
【PyTorch】PyTorch预训练模型缓存位置迁移,也可拓展应用于其他文件的迁移
人工智能·pytorch·经验分享·笔记·python·程序人生·其他
DeepSeek-大模型系统教程1 小时前
深入金融与多模态场景实战:金融文档分块技术与案例汇总
人工智能·ai·语言模型·程序员·大模型·大模型学习·大模型教程
xinxiangwangzhi_1 小时前
pytorch底层原理学习--PyTorch 架构梳理
人工智能·pytorch·架构