自定义数据集,使用scikit-learn 中K均值包 进行聚类

数据集生成:

  • 使用 make_blobs 函数生成包含300个样本的数据集,设定聚类中心为4个,聚类标准差为0.60,随机种子 random_state = 0 保证每次运行生成的数据相同。

K - 均值模型:

  • 初始化 KMeans 类,设置聚类数 n_clusters = 4 ,并使用 random_state = 0 确保每次运行结果一致。

  • 使用 fit 方法将模型拟合到生成的数据集 X 上。

获取结果:

  • 通过 labels_ 属性获取每个样本的聚类标签。

  • 通过 cluster_centers_ 属性获取聚类中心的坐标。

可视化:

  • 使用 matplotlib 库进行可视化。将样本点根据其聚类标签用不同颜色绘制,聚类中心用红色的 x 标记绘制

import numpy as np

from sklearn.datasets import make_blobs

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

生成自定义数据集

X, _ = make_blobs(n_samples = 300, centers = 4,

cluster_std = 0.60, random_state = 0)

初始化并拟合K - 均值模型

kmeans = KMeans(n_clusters = 4, random_state = 0)

kmeans.fit(X)

获取聚类标签

labels = kmeans.labels_

获取聚类中心

cluster_centers = kmeans.cluster_centers_

可视化聚类结果

plt.scatter(X[:, 0], X[:, 1], c = labels, cmap='viridis')

plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1], marker='x', s=200, linewidths = 3, color='r')

plt.title('K - Means Clustering')

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

plt.show()

相关推荐
max5006002 小时前
基于Meta Llama的二语习得学习者行为预测计算模型
人工智能·算法·机器学习·分类·数据挖掘·llama
王哥儿聊AI3 小时前
Lynx:新一代个性化视频生成模型,单图即可生成视频,重新定义身份一致性与视觉质量
人工智能·算法·安全·机器学习·音视频·软件工程
lisw054 小时前
连接蓝牙时“无媒体信号”怎么办?
人工智能·机器学习·微服务
jie*5 小时前
小杰机器学习(nine)——支持向量机
人工智能·python·机器学习·支持向量机·回归·聚类·sklearn
nju_spy5 小时前
南京大学 - 复杂结构数据挖掘(一)
大数据·人工智能·机器学习·数据挖掘·数据清洗·南京大学·相似性分析
Coovally AI模型快速验证5 小时前
从避障到实时建图:机器学习如何让无人机更智能、更安全、更实用(附微型机载演示示例)
人工智能·深度学习·神经网络·学习·安全·机器学习·无人机
没有梦想的咸鱼185-1037-16636 小时前
【遥感技术】从CNN到Transformer:基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类
pytorch·python·深度学习·机器学习·数据分析·cnn·transformer
钟爱蛋炒饭6 小时前
基于深度学习神经网络协同过滤模型(NCF)的视频推荐系统
python·神经网络·机器学习
悟乙己8 小时前
基于AWS Lambda的机器学习动态定价系统 CI/CD管道部署方案介绍
机器学习·ci/cd·aws
红苕稀饭6668 小时前
VideoChat-Flash论文阅读
人工智能·深度学习·机器学习