自定义数据集,使用scikit-learn 中K均值包 进行聚类

数据集生成:

  • 使用 make_blobs 函数生成包含300个样本的数据集,设定聚类中心为4个,聚类标准差为0.60,随机种子 random_state = 0 保证每次运行生成的数据相同。

K - 均值模型:

  • 初始化 KMeans 类,设置聚类数 n_clusters = 4 ,并使用 random_state = 0 确保每次运行结果一致。

  • 使用 fit 方法将模型拟合到生成的数据集 X 上。

获取结果:

  • 通过 labels_ 属性获取每个样本的聚类标签。

  • 通过 cluster_centers_ 属性获取聚类中心的坐标。

可视化:

  • 使用 matplotlib 库进行可视化。将样本点根据其聚类标签用不同颜色绘制,聚类中心用红色的 x 标记绘制

import numpy as np

from sklearn.datasets import make_blobs

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

生成自定义数据集

X, _ = make_blobs(n_samples = 300, centers = 4,

cluster_std = 0.60, random_state = 0)

初始化并拟合K - 均值模型

kmeans = KMeans(n_clusters = 4, random_state = 0)

kmeans.fit(X)

获取聚类标签

labels = kmeans.labels_

获取聚类中心

cluster_centers = kmeans.cluster_centers_

可视化聚类结果

plt.scatter(X[:, 0], X[:, 1], c = labels, cmap='viridis')

plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1], marker='x', s=200, linewidths = 3, color='r')

plt.title('K - Means Clustering')

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

plt.show()

相关推荐
大佬,救命!!!1 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
yLDeveloper3 小时前
致深度学习小白:一文理解拟合问题与经典解决方案
机器学习·dive into deep learning
6***x54514 小时前
C在机器学习中的ML.NET应用
人工智能·机器学习
甄心爱学习15 小时前
数据挖掘-聚类方法
人工智能·算法·机器学习
长桥夜波17 小时前
机器学习日报21
人工智能·机器学习
Jay200211119 小时前
【机器学习】10 正则化 - 减小过拟合
人工智能·机器学习
rgb2gray19 小时前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
不去幼儿园1 天前
【启发式算法】灰狼优化算法(Grey Wolf Optimizer, GWO)详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法
Hcoco_me1 天前
大模型面试题5:矩阵(M*M)特征值分解的步骤
算法·机器学习·矩阵
极客BIM工作室1 天前
用LLM+CadQuery自动生成CAD模型:CAD-Coder让文本秒变3D零件
人工智能·机器学习