TfidfVectorizer

TF-IDF / Term Frequency - Inverse Document Frequency

作用 :是自然语言处理NLP中常用的文本特征提取工具,用于将文本数据转换为数据向量。
核心思想:是通过统计词频和逆文档频率来量化词语在文本中的重要性。

  • T F − I D F ( t , d ) = T F ( t , d ) ∗ I D F ( t ) TF-IDF_{(t,d)} = TF_{(t,d)} * IDF_{(t)} TF−IDF(t,d)=TF(t,d)∗IDF(t)

  • 意义:

    -- 高频词(TF高)但罕见(IDF高)的词语会获得高权重(e.g.专业术语);

    -- 高频但常见的词语(如"的"、"是")会被抑制。

  • 子公式1/2

    -- T F ( t , d ) = 词 t 在文档 d 中出现次数 文档 d 的总词语 TF_{(t,d)} = \dfrac{词t在文档d中出现次数}{文档d的总词语} TF(t,d)=文档d的总词语词t在文档d中出现次数

  • 子公式2/2

    -- I D F ( t ) = 总文档数 包含词 t 的文档数 + 1 + 1 IDF_{(t)} = \dfrac{总文档数}{包含词t的文档数+1}+1 IDF(t)=包含词t的文档数+1总文档数+1

相关推荐
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
智航GIS6 小时前
10.4 Selenium:Web 自动化测试框架
前端·python·selenium·测试工具
jarreyer6 小时前
摄像头相关记录
python
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
大、男人6 小时前
python之asynccontextmanager学习
开发语言·python·学习
默默前行的虫虫7 小时前
nicegui文件上传归纳
python
一个没有本领的人8 小时前
UIU-Net运行记录
python
国强_dev8 小时前
Python 的“非直接原因”报错
开发语言·python
副露のmagic8 小时前
更弱智的算法学习 day24
python·学习·算法
廖圣平8 小时前
从零开始,福袋直播间脚本研究【三】《多进程执行selenium》
python·selenium·测试工具