Transformer Decoder 中的掩码多头自注意力机制:防止未来信息泄露的关键

在 Transformer 的 Decoder 结构中,掩码多头自注意力机制(Masked Multi-Head Attention)中的掩码(Mask)主要用于防止模型在生成当前词时"偷看"未来的词,确保生成过程的因果性。以下是掩码的具体含义和作用:

1. 掩码的作用

  • 防止未来信息泄露:在解码器中,掩码确保模型在生成每个词时,只能关注到当前词及之前的词,而不能看到未来的词。这通过将未来位置的注意力权重设置为负无穷大来实现,使得这些位置在经过 softmax 操作后权重接近于 0,从而被忽略。

  • 处理变长序列:掩码还可以用于屏蔽填充(padding)部分,确保模型只关注真实的词元,而不是填充的无意义部分。

2. 技术实现

  • 掩码矩阵:掩码通常是一个下三角矩阵,对角线及左下部分为 1,其余部分为 0。例如,一个 4 维的下三角矩阵如下:

    复制

    复制代码
    tensor([[1, 0, 0, 0],
            [1, 1, 0, 0],
            [1, 1, 1, 0],
            [1, 1, 1, 1]])
  • 应用掩码:在计算注意力分数时,将掩码矩阵与注意力分数矩阵相乘。掩码为 0 的位置会被加上一个非常大的负数(如负无穷),这样在经过 softmax 操作后,这些位置的值将接近 0,从而屏蔽未来的信息。

3. 示例

假设有一个 4 维的注意力分数矩阵:

复制

复制代码
tensor([[[ 0.5530,  0.6123,  0.3896, -0.0834],
         [ 0.0271,  0.2272,  0.1394, -0.1029],
         [ 0.4198,  0.2406,  0.1581,  0.0425],
         [ 0.4801,  0.2925,  0.1978,  0.0919]],
        [[-0.4385, -0.1696, -0.2063, -0.5110],
         [-0.3161, -0.0823, -0.0555, -0.2165],
         [-0.1579,  0.0111,  0.0187, -0.1701],
         [ 0.0276,  0.0543,  0.0457, -0.0404]]])

应用掩码后的注意力分数矩阵为:

复制

复制代码
tensor([[[ 0.5530,    -inf,    -inf,    -inf],
         [ 0.0271,  0.2272,    -inf,    -inf],
         [ 0.4198,  0.2406,  0.1581,    -inf],
         [ 0.4801,  0.2925,  0.1978,  0.0919]],
        [[-0.4385,    -inf,    -inf,    -inf],
         [-0.3161, -0.0823,    -inf,    -inf],
         [-0.1579,  0.0111,  0.0187,    -inf],
         [ 0.0276,  0.0543,  0.0457, -0.0404]]])

经过 softmax 归一化后的掩码注意力分数矩阵为:

复制

复制代码
tensor([[[1.0000, 0.0000, 0.0000, 0.0000],
         [0.4501, 0.5499, 0.0000, 0.0000],
         [0.3838, 0.3208, 0.2954, 0.0000],
         [0.3066, 0.2542, 0.2312, 0.2080]],
        [[1.0000, 0.0000, 0.0000, 0.0000],
         [0.4418, 0.5582, 0.0000, 0.0000],
         [0.2961, 0.3506, 0.3533, 0.0000],
         [0.2513, 0.2581, 0.2559, 0.2348]]])

可以看到,未来位置的注意力权重被成功屏蔽。

4. 总结

掩码多头自注意力机制中的掩码主要用于防止模型在生成当前词时看到未来的词,确保生成过程的因果性。通过将未来位置的注意力权重设置为负无穷大,掩码确保模型只关注当前词及之前的词。此外,掩码还可以用于处理变长序列,屏蔽填充部分。

相关推荐
一点.点7 分钟前
SafeDrive:大语言模型实现自动驾驶汽车知识驱动和数据驱动的风险-敏感决策——论文阅读
人工智能·语言模型·自动驾驶
concisedistinct14 分钟前
如何评价大语言模型架构 TTT ?模型应不应该永远“固定”在推理阶段?模型是否应当在使用时继续学习?
人工智能·语言模型·大模型
找了一圈尾巴16 分钟前
AI Agent-基础认知与架构解析
人工智能·ai agent
jzwei02324 分钟前
Transformer Decoder-Only 参数量计算
人工智能·深度学习·transformer
小言Ai工具箱28 分钟前
PuLID:高效的图像变脸,可以通过文本提示编辑图像,通过指令修改人物属性,个性化文本到图像生成模型,支持AI变脸!艺术创作、虚拟形象定制以及影视制作
图像处理·人工智能·计算机视觉
白熊18829 分钟前
【计算机视觉】基于深度学习的实时情绪检测系统:emotion-detection项目深度解析
人工智能·深度学习·计算机视觉
TextIn智能文档云平台30 分钟前
PDF文档解析新突破:图表识别、公式还原、手写字体处理,让AI真正读懂复杂文档!
图像处理·人工智能·算法·自然语言处理·pdf·ocr
老任与码34 分钟前
Spring AI(2)—— 发送消息的API
java·人工智能·spring ai
AI改变未来36 分钟前
智慧城市新力量!AI如何助力社会治理创新?
人工智能·ai·智慧城市·ai应用
Panesle1 小时前
HunyuanCustom:文生视频框架论文速读
人工智能·算法·音视频·文生视频