Transformer Decoder 中的掩码多头自注意力机制:防止未来信息泄露的关键

在 Transformer 的 Decoder 结构中,掩码多头自注意力机制(Masked Multi-Head Attention)中的掩码(Mask)主要用于防止模型在生成当前词时"偷看"未来的词,确保生成过程的因果性。以下是掩码的具体含义和作用:

1. 掩码的作用

  • 防止未来信息泄露:在解码器中,掩码确保模型在生成每个词时,只能关注到当前词及之前的词,而不能看到未来的词。这通过将未来位置的注意力权重设置为负无穷大来实现,使得这些位置在经过 softmax 操作后权重接近于 0,从而被忽略。

  • 处理变长序列:掩码还可以用于屏蔽填充(padding)部分,确保模型只关注真实的词元,而不是填充的无意义部分。

2. 技术实现

  • 掩码矩阵:掩码通常是一个下三角矩阵,对角线及左下部分为 1,其余部分为 0。例如,一个 4 维的下三角矩阵如下:

    复制

    复制代码
    tensor([[1, 0, 0, 0],
            [1, 1, 0, 0],
            [1, 1, 1, 0],
            [1, 1, 1, 1]])
  • 应用掩码:在计算注意力分数时,将掩码矩阵与注意力分数矩阵相乘。掩码为 0 的位置会被加上一个非常大的负数(如负无穷),这样在经过 softmax 操作后,这些位置的值将接近 0,从而屏蔽未来的信息。

3. 示例

假设有一个 4 维的注意力分数矩阵:

复制

复制代码
tensor([[[ 0.5530,  0.6123,  0.3896, -0.0834],
         [ 0.0271,  0.2272,  0.1394, -0.1029],
         [ 0.4198,  0.2406,  0.1581,  0.0425],
         [ 0.4801,  0.2925,  0.1978,  0.0919]],
        [[-0.4385, -0.1696, -0.2063, -0.5110],
         [-0.3161, -0.0823, -0.0555, -0.2165],
         [-0.1579,  0.0111,  0.0187, -0.1701],
         [ 0.0276,  0.0543,  0.0457, -0.0404]]])

应用掩码后的注意力分数矩阵为:

复制

复制代码
tensor([[[ 0.5530,    -inf,    -inf,    -inf],
         [ 0.0271,  0.2272,    -inf,    -inf],
         [ 0.4198,  0.2406,  0.1581,    -inf],
         [ 0.4801,  0.2925,  0.1978,  0.0919]],
        [[-0.4385,    -inf,    -inf,    -inf],
         [-0.3161, -0.0823,    -inf,    -inf],
         [-0.1579,  0.0111,  0.0187,    -inf],
         [ 0.0276,  0.0543,  0.0457, -0.0404]]])

经过 softmax 归一化后的掩码注意力分数矩阵为:

复制

复制代码
tensor([[[1.0000, 0.0000, 0.0000, 0.0000],
         [0.4501, 0.5499, 0.0000, 0.0000],
         [0.3838, 0.3208, 0.2954, 0.0000],
         [0.3066, 0.2542, 0.2312, 0.2080]],
        [[1.0000, 0.0000, 0.0000, 0.0000],
         [0.4418, 0.5582, 0.0000, 0.0000],
         [0.2961, 0.3506, 0.3533, 0.0000],
         [0.2513, 0.2581, 0.2559, 0.2348]]])

可以看到,未来位置的注意力权重被成功屏蔽。

4. 总结

掩码多头自注意力机制中的掩码主要用于防止模型在生成当前词时看到未来的词,确保生成过程的因果性。通过将未来位置的注意力权重设置为负无穷大,掩码确保模型只关注当前词及之前的词。此外,掩码还可以用于处理变长序列,屏蔽填充部分。

相关推荐
失散139 分钟前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.82434 分钟前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_2869451938 分钟前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火2 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴3 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR3 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢3 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
whaosoft-1434 小时前
51c自动驾驶~合集14
人工智能
Jinkxs4 小时前
自动化测试的下一站:AI缺陷检测工具如何实现“bug提前预警”?
人工智能·自动化
小幽余生不加糖4 小时前
电路方案分析(二十二)适用于音频应用的25-50W反激电源方案
人工智能·笔记·学习·音视频