三角测量——用相机运动估计特征点的空间位置

引入

使用对极约束估计了相机运动后,接下来利用相机运动估计特征点的空间位置,使用的方法就是三角测量

三角测量

对极几何中的对极几何约束描述类似:
z 2 x 2 = R ( z 1 x 1 ) + t z_2x_2=R(z_1x_1)+t z2x2=R(z1x1)+t

经过对极约束的求解,现在已知R,t,我们想求解两个特征点的深度z1,z2。(在单目相机模型中,深度被抹去了,因此若想建图需要求解'z')

那么先对上式两侧左乘一个 x 2 ∧ x_2^{∧} x2∧(等价于叉乘 x 2 x_2 x2)得:
z 2 x 2 ∧ x 2 = 0 = R ( z 1 x 2 ∧ x 1 ) + x 2 ∧ t z_2x_2^{∧}x_2=0=R(z_1x_2^{∧}x_1)+x_2^{∧}t z2x2∧x2=0=R(z1x2∧x1)+x2∧t

该式左侧为零,右侧可看成 z 1 z_1 z1的一个方程,可以根据它直接求得 z 1 z_1 z1,之后再求 z 2 z_2 z2就很简单了。当然,由于噪声的存在,我们估得的R,t不一定精确使式子成立,所以更常见的做法是求最小二乘解 而不是直接的解。

如图所示,理论上 o 1 p 1 o_1p_1 o1p1会和 o 2 p 2 o_2p_2 o2p2相交于p点。但由于噪声 的存在,两条线可能会出现异面 ,即,两条线在两个平行的平面中,而两个平面互相平行。因此我们会选择两条线最近的的近似为p点,也就是最小二乘解

相关推荐
serve the people2 小时前
TensorFlow 图执行(tf.function)的 “非严格执行(Non-strict Execution)” 特性
人工智能·python·tensorflow
泰迪智能科技2 小时前
图书推荐分享 | 堪称教材天花板,深度学习教材-TensorFlow 2 深度学习实战(第2版)(微课版)
人工智能·深度学习·tensorflow
吴佳浩4 小时前
LangChain 深入
人工智能·python·langchain
LplLpl117 小时前
AI 算法竞赛通关指南:基于深度学习的图像分类模型优化实战
大数据·人工智能·机器学习
依米s7 小时前
各年度人工智能大会WAIC核心议题(持续更新)
人工智能·人工智能+·waic·人工智能大会+
python机器学习建模8 小时前
22篇经典金融风控论文复现(2025年11月更新)
人工智能·机器学习·论文·期刊·金融风控
Codebee8 小时前
深度解析AI编程技术:从原理到实践,手把手教你落地
人工智能·设计模式·开源
武汉唯众智创8 小时前
基于五级工的人工智能训练师教学解决方案
人工智能·ai·产教融合·人工智能训练师·五级工·ai训练师
执笔论英雄8 小时前
【RL】python协程
java·网络·人工智能·python·设计模式
你好~每一天9 小时前
未来3年,最值得拿下的5个AI证书!
数据结构·人工智能·算法·sqlite·hbase·散列表·模拟退火算法