三角测量——用相机运动估计特征点的空间位置

引入

使用对极约束估计了相机运动后,接下来利用相机运动估计特征点的空间位置,使用的方法就是三角测量

三角测量

对极几何中的对极几何约束描述类似:
z 2 x 2 = R ( z 1 x 1 ) + t z_2x_2=R(z_1x_1)+t z2x2=R(z1x1)+t

经过对极约束的求解,现在已知R,t,我们想求解两个特征点的深度z1,z2。(在单目相机模型中,深度被抹去了,因此若想建图需要求解'z')

那么先对上式两侧左乘一个 x 2 ∧ x_2^{∧} x2∧(等价于叉乘 x 2 x_2 x2)得:
z 2 x 2 ∧ x 2 = 0 = R ( z 1 x 2 ∧ x 1 ) + x 2 ∧ t z_2x_2^{∧}x_2=0=R(z_1x_2^{∧}x_1)+x_2^{∧}t z2x2∧x2=0=R(z1x2∧x1)+x2∧t

该式左侧为零,右侧可看成 z 1 z_1 z1的一个方程,可以根据它直接求得 z 1 z_1 z1,之后再求 z 2 z_2 z2就很简单了。当然,由于噪声的存在,我们估得的R,t不一定精确使式子成立,所以更常见的做法是求最小二乘解 而不是直接的解。

如图所示,理论上 o 1 p 1 o_1p_1 o1p1会和 o 2 p 2 o_2p_2 o2p2相交于p点。但由于噪声 的存在,两条线可能会出现异面 ,即,两条线在两个平行的平面中,而两个平面互相平行。因此我们会选择两条线最近的的近似为p点,也就是最小二乘解

相关推荐
双普拉斯8 分钟前
Spring WebFlux调用生成式AI提供的stream流式接口,实现返回实时对话
java·vue.js·人工智能·后端·spring
Sunhen_Qiletian14 分钟前
用PyTorch实现CBOW模型:从原理到实战的Word2Vec入门指南
人工智能·pytorch·word2vec
진영_17 分钟前
深度学习打卡第N7周:调用Gensim库训练Word2Vec模型
人工智能·深度学习·word2vec
黄啊码30 分钟前
【黄啊码】这份AI编程心法,希望对你有用
人工智能
IT_陈寒1 小时前
SpringBoot实战:这5个高效开发技巧让我节省了50%编码时间!
前端·人工智能·后端
腾飞开源1 小时前
《AI智能体实战开发教程(从0到企业级项目落地)》全网上线|CSDN & B站同步首发
人工智能·ai智能体开发·全网首发·新课上线·粉丝专属优惠·全完结·企业级项目落地
Python极客之家1 小时前
基于数据挖掘的在线游戏行为分析预测系统
人工智能·python·机器学习·数据挖掘·毕业设计·课程设计
说私域1 小时前
基于开源AI智能名片与链动2+1模式的S2B2C商城小程序研究:构建“信息找人”式精准零售新范式
人工智能·小程序·开源
嘀咕博客2 小时前
Kimi-Audio:Kimi开源的通用音频基础模型,支持语音识别、音频理解等多种任务
人工智能·音视频·语音识别·ai工具
Baihai_IDP2 小时前
GPU 网络基础,Part 2(MoE 训练中的网络挑战;什么是前、后端网络;什么是东西向、南北向流量)
人工智能·llm·gpu