三角测量——用相机运动估计特征点的空间位置

引入

使用对极约束估计了相机运动后,接下来利用相机运动估计特征点的空间位置,使用的方法就是三角测量

三角测量

对极几何中的对极几何约束描述类似:
z 2 x 2 = R ( z 1 x 1 ) + t z_2x_2=R(z_1x_1)+t z2x2=R(z1x1)+t

经过对极约束的求解,现在已知R,t,我们想求解两个特征点的深度z1,z2。(在单目相机模型中,深度被抹去了,因此若想建图需要求解'z')

那么先对上式两侧左乘一个 x 2 ∧ x_2^{∧} x2∧(等价于叉乘 x 2 x_2 x2)得:
z 2 x 2 ∧ x 2 = 0 = R ( z 1 x 2 ∧ x 1 ) + x 2 ∧ t z_2x_2^{∧}x_2=0=R(z_1x_2^{∧}x_1)+x_2^{∧}t z2x2∧x2=0=R(z1x2∧x1)+x2∧t

该式左侧为零,右侧可看成 z 1 z_1 z1的一个方程,可以根据它直接求得 z 1 z_1 z1,之后再求 z 2 z_2 z2就很简单了。当然,由于噪声的存在,我们估得的R,t不一定精确使式子成立,所以更常见的做法是求最小二乘解 而不是直接的解。

如图所示,理论上 o 1 p 1 o_1p_1 o1p1会和 o 2 p 2 o_2p_2 o2p2相交于p点。但由于噪声 的存在,两条线可能会出现异面 ,即,两条线在两个平行的平面中,而两个平面互相平行。因此我们会选择两条线最近的的近似为p点,也就是最小二乘解

相关推荐
叶子20242210 分钟前
学习使用YOLO的predict函数使用
人工智能·学习·yolo
dmy15 分钟前
n8n内网快速部署
运维·人工智能·程序员
傻啦嘿哟21 分钟前
Python 数据分析与可视化实战:从数据清洗到图表呈现
大数据·数据库·人工智能
火星数据-Tina25 分钟前
AI数据分析在体育中的应用:技术与实践
人工智能·数据挖掘·数据分析
J_Xiong011744 分钟前
【LLMs篇】14:扩散语言模型的理论优势与局限性
人工智能·语言模型·自然语言处理
红衣小蛇妖2 小时前
神经网络-Day44
人工智能·深度学习·神经网络
忠于明白2 小时前
Spring AI 核心工作流
人工智能·spring·大模型应用开发·spring ai·ai 应用商业化
大写-凌祁2 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
柯南二号3 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent