大模型基本原理(四)——如何武装ChatGPT

传统的LLM存在几个短板:编造事实、计算不准确、数据过时等,为了应对这几个问题,可以借助一些外部工具或数据把AI武装起来。

实现这一思路的框架包括RAG、PAL、ReAct。

1、RAG(检索增强生成)

LLM生成的内容会受到训练数据的影响,所以如果训练数据里对某个领域的文本覆盖不多,就没有办法很好的回答我们提出的问题,这个时候RAG就可以很好的解决这个问题。

**RAG:**通过提供外部文档,让模型访问外部知识库,获得更可靠和准确的回答。

具体步骤:

(1)外部知识文档要先被切分成一个个段落,因为LLM一次性能够接受的文本长度有限。每个段落会被转换成一系列向量,向量可以被看作是一串固定长度的数字,然后将一系列向量储存进向量数据库中。

(2)当我们提出问题时,这个提示也会被转换成向量,然后查找向量数据库中和用户的查询向量最为接近的段落向量,找到段落向量以后,段落信息会和原本的用户查询问题组合到一起,一块传给AI。这样AI就能把外部文档的段落作为上下文,基于里面的信息给出更严谨的回答。

RAG有利于搭建企业知识库或个人知识库。

2、PAL(程序辅助语言模型)

AI的另一个缺陷是,我们没有办法把它用作计算器,因为AI只会预测下一个最大概率的token,并不会真正的进行计算。

PAL的核心在于,我们不让AI直接生成计算结果,而是借助其他善于做计算的工具,如python解释器,那我们给AI的要求就变成,在涉及计算步骤时,生成得到计算结果所需的代码。

具体操作我们可以借助思维链,在prompt中通过小样本提示,给模型示范如何分步骤思考,写出解决问题所需的变量赋值、数学运算等等代码。当用户提问后,将用户的问题和我们已有的提示模板进行拼接,将拼接后的内容一并给到AI,将AI生成的代码给到python解释器,并将代码执行的结果返回给AI,让AI带着计算得到的答案对用户的问题进行回复。

相当于LLM得到了问题和答案,最终生成问题的回答。

3、ReAct(推理行动结合)

由于LLM天然受到训练数据日期的影响,没有办法得到最新的知识和内容。

ReAct核心在于,让模型进行动态推理,并采取行动与外界环境互动。

ReAct同样可以和思维链结合,使用小样本提示,展示给模型一个推理与行动结合的框架,针对问题,把步骤进行拆分,每个步骤要进行推理、行动、观察。推理是针对问题或上一步观察的思考,行动是基于推理与外部环境的一些交互(比如用搜索引擎对关键字进行搜索),观察是对行动得到的结果进行查看。

如果问AI2022年欧冠的冠军是哪个球队,它得到答案的过程可能是这样。

通过分布推理的思维链,模型不仅可以获得更准确的答案,而且我们也可以通过这些轨迹进行验证。

ReAct框架的Action,不专指搜索和浏览网页,而是AI模型所支持的任何行动(执行代码,数据库查找,API调用等)

相关推荐
一个机器视觉工程师的自我修养18 分钟前
Halcon.Net与Numpy、OpenCV联合编程
人工智能·opencv·numpy
AndrewHZ25 分钟前
DeepSeek-R1技术革命:用强化学习重塑大语言模型的推理能力
人工智能·python·深度学习·算法·语言模型
漂亮_大男孩30 分钟前
深度学习|表示学习|Instance Normalization 全面总结|26
人工智能·深度学习·神经网络·学习·cnn
美狐美颜sdk38 分钟前
美颜SDK架构设计指南:性能优化与跨平台适配实战
人工智能·深度学习·性能优化·美颜sdk·视频美颜sdk
开出南方的花1 小时前
DeepSeek模型架构及优化内容
人工智能·pytorch·深度学习·机器学习·架构·nlp·attention
杀死这个程序员2 小时前
conda介绍及常用命令举例
人工智能·conda
说私域2 小时前
互联网企业线上业务拓展与开源AI智能名片2+1链动模式S2B2C商城小程序的创新应用
人工智能·小程序·开源
时间很奇妙!3 小时前
NLP & Word Embeddings
人工智能·自然语言处理·word
金融OG3 小时前
100.14 AI量化面试题:模型蒸馏(Model Distillation)和模型微调(Fine-tuning)的异同点
人工智能·python·机器学习·数学建模·金融