LangChain基础篇 (06)

LangChain 核心模块 Agent(构建复杂应用的代理系统)

ReAct: Reasoning + Acting

ReAct Prompt 由 few-shot task-solving trajectories 组成,包括人工编写的文本推理过程和动作,以及对

动作的环境观察.

ReAct Prompt 设计直观灵活,并在各种任务上实现了最先进的少样本性能,从QA到在线购物


ReAct 在获取新数据方面的优势(HotpotQA 示例)

Reason-only baseline (即思维链)由于没有与外部环境接触以获取和更新知识,而且必须依赖有限的内部知识,因此容易受

到错误信息(红色标记)的影响。

Act-only baseline 缺乏推理能力方面问题,在这种情况下,尽管具有与ReAct相同的行动和观察,但无法综合得出最终答案。

相比之下,ReAct通过可解释且真实可信的轨迹来解决任务。

ReAct 在微调方面的优势

使用 ReAct 提示轨迹在 HotpotQA 上进行初始微调的结果表明:
(1)ReAct 是各种模型规模中最好的微调方式;
(2)ReAct 微调的较小模型胜过了被提示(prompted)的更大模型。

LangChain Agents

代理的核心思想是使用LLM来选择一系列要执行的动作。

  • 在链式结构(Chains)中,一系列动作执行是硬编码的( SequentialChain 和 RouterChain 也仅实现了面向过程)。
  • 在代理(Agents)中,语言模型被用作推理引擎,以确定应该采取哪些动作以及执行顺序。
相关推荐
lusasky6 小时前
AgentScope、LangChain、AutoGen 全方位对比 + 混用可行性指南
microsoft·langchain
前端阿森纳19 小时前
从产品经理视角拆解 LangChain 的抽象设计
langchain·llm·aigc
大模型真好玩1 天前
LangGraph1.0速通指南(一)—— LangGraph1.0 核心概念、点、边
人工智能·langchain·agent
阿里云云原生1 天前
AgentRun Sandbox SDK 正式开源!集成 LangChain 等主流框架,一键开启智能体沙箱新体验
阿里云·langchain·开源·serverless·agentarun
、、、、南山小雨、、、、1 天前
最简单的LangChain和RAG
langchain
路边草随风1 天前
langchain agent动态变更系统prompt
人工智能·python·langchain·prompt
Jack___Xue1 天前
LangChain实战快速入门笔记(六)--LangChain使用之Agent
笔记·langchain·unix
大模型教程2 天前
使用Langchain4j和Ollama3搭建RAG系统
langchain·llm·ollama
Elwin Wong2 天前
本地运行LangChain Agent用于开发调试
人工智能·langchain·大模型·llm·agent·codingagent
FreeCode2 天前
智能体设计模式解析:ReAct模式
设计模式·langchain·agent