LangChain基础篇 (06)

LangChain 核心模块 Agent(构建复杂应用的代理系统)

ReAct: Reasoning + Acting

ReAct Prompt 由 few-shot task-solving trajectories 组成,包括人工编写的文本推理过程和动作,以及对

动作的环境观察.

ReAct Prompt 设计直观灵活,并在各种任务上实现了最先进的少样本性能,从QA到在线购物


ReAct 在获取新数据方面的优势(HotpotQA 示例)

Reason-only baseline (即思维链)由于没有与外部环境接触以获取和更新知识,而且必须依赖有限的内部知识,因此容易受

到错误信息(红色标记)的影响。

Act-only baseline 缺乏推理能力方面问题,在这种情况下,尽管具有与ReAct相同的行动和观察,但无法综合得出最终答案。

相比之下,ReAct通过可解释且真实可信的轨迹来解决任务。

ReAct 在微调方面的优势

使用 ReAct 提示轨迹在 HotpotQA 上进行初始微调的结果表明:
(1)ReAct 是各种模型规模中最好的微调方式;
(2)ReAct 微调的较小模型胜过了被提示(prompted)的更大模型。

LangChain Agents

代理的核心思想是使用LLM来选择一系列要执行的动作。

  • 在链式结构(Chains)中,一系列动作执行是硬编码的( SequentialChain 和 RouterChain 也仅实现了面向过程)。
  • 在代理(Agents)中,语言模型被用作推理引擎,以确定应该采取哪些动作以及执行顺序。
相关推荐
进击的松鼠14 小时前
LangChain 实战 | 快速搭建 Python 开发环境
python·langchain·llm
xinxin本尊14 小时前
通过langchain的LCEL创建带历史感知的检索链
langchain
资深web全栈开发15 小时前
深度对比 LangChain 8 种文档分割方式:从逻辑底层到选型实战
深度学习·自然语言处理·langchain
FranzLiszt184716 小时前
基于One API 将本地 Ollama 模型接入 FastGPT
langchain·fastgpt·rag·ollama·one api
zuozewei19 小时前
零基础 | 基于LangChain的角色扮演聊天机器人实现
python·langchain·机器人
猫头虎19 小时前
Claude Code 永动机:ralph-loop 无限循环迭代插件详解(安装 / 原理 / 最佳实践 / 避坑)
ide·人工智能·langchain·开源·编辑器·aigc·编程技术
言之。21 小时前
LangChain短期内存系统
microsoft·langchain
xinxin本尊1 天前
使用langchain创建一个ReAct能力的agent
langchain
言之。1 天前
LangChain 模型模块使用详解
python·langchain·flask
田井中律.1 天前
AI大模型之Agent,RAG,LangChain(二)
langchain