对gru的理解

GRU(Gated Recurrent Unit,门控循环单元)是一种循环神经网络(RNN)的变体,最早由Kyunghyun Cho等人在2014年提出。它是**LSTM(Long Short-Term Memory)**的简化版,旨在缓解标准RNN的梯度消失问题,同时减少计算开销。


1. GRU 结构

GRU的核心由两个门控制信息流动:

  • 更新门(Update Gate,z):决定当前时间步的隐藏状态有多少信息需要保留、多少信息来自新输入。
  • 重置门(Reset Gate,r):控制遗忘过去的信息,决定当前输入对隐藏状态的影响程度。

GRU的数学公式如下:

  1. 更新门

    z t = σ ( W z x t + U z h t − 1 + b z ) z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z) zt=σ(Wzxt+Uzht−1+bz)

  2. 重置门
    r t = σ ( W r x t + U r h t − 1 + b r r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r rt=σ(Wrxt+Urht−1+br

  3. 候选隐藏状态

    h ~ t = tanh ⁡ ( W h x t + U h ( r t ⊙ h t − 1 ) + b h ) \tilde{h}t = \tanh(W_h x_t + U_h (r_t \odot h{t-1}) + b_h) h~t=tanh(Whxt+Uh(rt⊙ht−1)+bh)

  4. 最终隐藏状态更新
    h t = ( 1 − z t ) ⊙ h t − 1 + z t ⊙ h ~ t h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t ht=(1−zt)⊙ht−1+zt⊙h~t

其中:

  • σ \sigma σ 是sigmoid函数,确保门的输出在 (0,1) 之间。
  • ⊙ \odot ⊙ 代表逐元素乘法(Hadamard 乘积)
  • W W W 和 U U U 是可训练权重, b b b 是偏置项。

从公式我们可以看出, 在计算 h ~ t \tilde{h}_t h~t 的时候, r t rt rt(重置门) 越接近1则结果受到过去状态的影响越大, r t rt rt(重置门) 越接近0的时候,结果受到过去状态的影响越小。 这就是重置门的作用。用于控制遗忘过去的信息。

计算新的 h t h_t ht 的时候, 更新们 z t z_t zt 越接近1,结果受到 h ~ t \tilde{h}_t h~t (当前输入)影响大, 当 z t z_t zt 越接近0时, 结果受到 h t h_t ht(过去状态)影响大。所以这体现了更新门的作用:决定当前时间步的隐藏状态有多少信息需要保留、多少信息来自新输入。

相关推荐
aminghhhh11 分钟前
多模态融合【十九】——MRFS: Mutually Reinforcing Image Fusion and Segmentation
人工智能·深度学习·学习·计算机视觉·多模态
努力毕业的小土博^_^1 小时前
【深度学习|学习笔记】 Generalized additive model广义可加模型(GAM)详解,附代码
人工智能·笔记·深度学习·神经网络·学习
天上路人2 小时前
采用AI神经网络降噪算法的语言降噪消回音处理芯片NR2049-P
深度学习·神经网络·算法·硬件架构·音视频·实时音视频·可用性测试
灬0灬灬0灬11 小时前
深度学习---常用优化器
人工智能·深度学习
BioRunYiXue12 小时前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
Blossom.11815 小时前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘
机器学习之心16 小时前
SHAP分析!Transformer-GRU组合模型SHAP分析,模型可解释不在发愁!
深度学习·gru·transformer·shap分析
RK_Dangerous16 小时前
【深度学习】计算机视觉(18)——从应用到设计
人工智能·深度学习·计算机视觉
Stara051117 小时前
基于注意力机制与iRMB模块的YOLOv11改进模型—高效轻量目标检测新范式
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
scdifsn18 小时前
动手学深度学习12.4.硬件-笔记&练习(PyTorch)
pytorch·笔记·深度学习·缓存·内存·硬盘·深度学习硬件