InspireMusic:阿里通义实验室开源的音乐生成模型,支持文本或音频生成多种风格的音乐

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


大家好,我是蚝油菜花,今天跟大家分享一下 InspireMusic 这个由阿里巴巴通义实验室开源的音乐生成技术。

🚀 快速阅读

InspireMusic 是阿里巴巴通义实验室开源的音乐生成技术,能够通过人工智能为用户生成高质量的音乐作品。

  1. 核心功能:支持通过简单的文字描述或音频提示快速生成多种风格的音乐。
  2. 技术原理:基于多模态大模型技术,结合自回归 Transformer 模型、扩散模型(CFM)和 Vocoder 实现音乐生成。

InspireMusic 是什么

InspireMusic 是阿里巴巴通义实验室开源的音乐生成技术,通过人工智能为用户生成高质量的音乐作品。它基于多模态大模型技术,支持通过简单的文字描述或音频提示快速生成多种风格的音乐。InspireMusic 的核心架构包括音频 tokenizer、自回归 Transformer 模型、扩散模型(CFM)和 Vocoder,能实现文本生成音乐、音乐续写等功能。

InspireMusic 旨在为普通用户提供创新的声音景观和增强音乐创作的能力,适用于音乐创作、音频处理和个人音乐爱好者等多种场景。

InspireMusic 的主要功能

  • 文本到音乐的生成:用户可以通过简单的文字描述生成符合需求的音乐作品。
  • 音乐结构和风格控制:支持通过音乐类型、情感表达和复杂的音乐结构标签来控制生成的音乐。
  • 高质量音频输出:支持多种采样率(如24kHz和48kHz),能够生成高音质的音频。
  • 长音频生成:支持生成超过5分钟的长音频。
  • 灵活的推理模式:提供fast模式(快速生成)和高音质模式,满足不同用户的需求。
  • 模型训练和调优工具:为研究者和开发者提供丰富的音乐生成模型训练和调优工具。

InspireMusic 的技术原理

  • 音频 Tokenizer:使用具有高压缩比的单码本 WavTokenizer,将输入的连续音频特征转换为离散的音频 token。将音频数据转化为模型可以处理的形式。
  • 自回归 Transformer 模型:基于 Qwen 模型初始化的自回归 Transformer 模型,用于根据文本提示预测音频 token。模型能理解文本描述并生成与之匹配的音乐序列。
  • 扩散模型(Conditional Flow Matching, CFM):用基于常微分方程的扩散模型重建音频的潜层特征。CFM 模型能从生成的音频 token 中恢复出高质量的音频特征,增强音乐的连贯性和自然度。
  • Vocoder:将重建后的音频特征转换为高质量的音频波形,输出最终的音乐作品。

如何运行 InspireMusic

1. 克隆仓库

sh 复制代码
git clone --recursive https://github.com/FunAudioLLM/InspireMusic.git
cd InspireMusic
git submodule update --init --recursive

2. 安装依赖

InspireMusic 要求 Python 3.8 和 PyTorch 2.0.1。安装步骤如下:

sh 复制代码
conda create -n inspiremusic python=3.8
conda activate inspiremusic
conda install -y -c conda-forge pynini==2.1.5
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
pip install flash-attn --no-build-isolation

3. 下载预训练模型

sh 复制代码
mkdir -p pretrained_models
git clone https://www.modelscope.cn/iic/InspireMusic-1.5B-Long.git pretrained_models/InspireMusic-1.5B-Long

4. 快速生成音乐

sh 复制代码
cd examples/music_generation
bash infer_1.5b_long.sh

5. 一键生成音乐(文本到音乐)

sh 复制代码
python -m inspiremusic.cli.inference --task text-to-music -m "InspireMusic-1.5B-Long" -g 0 -t "Experience soothing and sensual instrumental jazz with a touch of Bossa Nova, perfect for a relaxing restaurant or spa ambiance." -c intro -s 0.0 -e 30.0 -r "exp/inspiremusic" -o output -f wav

6. 音乐续写

sh 复制代码
python -m inspiremusic.cli.inference --task continuation -g 0 -a audio_prompt.wav

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关推荐
Ronin-Lotus4 小时前
深度学习篇---剪裁&缩放
图像处理·人工智能·缩放·剪裁
cpsvps4 小时前
3D芯片香港集成:技术突破与产业机遇全景分析
人工智能·3d
国科安芯5 小时前
抗辐照芯片在低轨卫星星座CAN总线通讯及供电系统的应用探讨
运维·网络·人工智能·单片机·自动化
AKAMAI5 小时前
利用DataStream和TrafficPeak实现大数据可观察性
人工智能·云原生·云计算
Ai墨芯1115 小时前
深度学习水论文:特征提取
人工智能·深度学习
无名工程师6 小时前
神经网络知识讨论
人工智能·神经网络
nbsaas-boot6 小时前
AI时代,我们更需要自己的开发方式与平台
人工智能
SHIPKING3936 小时前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决
人工智能·深度学习·机器学习
jonyleek7 小时前
如何搭建一套安全的,企业级本地AI专属知识库系统?从安装系统到构建知识体系,全流程!
人工智能·安全
MQ_SOFTWARE8 小时前
AI驱动的金融推理:Fin-R1模型如何重塑行业决策逻辑
人工智能·金融