【Day39 LeetCode】动态规划DP 编辑问题

一、动态规划DP 编辑问题

1、不同的子序列 115

采用动态规划来解决子序列问题。有两个字符串,采用二维dp数组,dp[i][j]表示0~i-1的s子字符串中含有0 ~j-1的t子字符串的个数。

递推公式分为s[i - 1] 与 t[j - 1]相等和不相等的情况

CPP 复制代码
class Solution {
public:
    int numDistinct(string s, string t) {
        int m = s.size(), n = t.size();
        vector<vector<unsigned long long>> dp(m + 1, vector<unsigned long long>(n + 1));
        for(int i=0; i<=m; ++i)
            dp[i][0] = 1;
        for(int i=1; i<=m; ++i){
            for(int j=1; j<=n; ++j){
                dp[i][j] = dp[i-1][j];
                if(s[i-1]==t[j-1])
                    dp[i][j] += dp[i-1][j-1];
            }
        }
        return dp[m][n];
    }
};

由递推公式可知,当前值dp[i][j]只与其上方的值和左上方值有关,可以将二维数组优化成一维数组,代码如下

CPP 复制代码
class Solution {
public:
    int numDistinct(string s, string t) {
        int m = s.size(), n = t.size();
        vector<unsigned long long> dp(n + 1, 0);
        dp[0] = 1;
        for(int i=1; i<=m; ++i){
            int leftup = dp[0];
            for(int j=1; j<=n; ++j){
                int tmp = dp[j];
                if(s[i-1]==t[j-1])
                    dp[j] += leftup;
                leftup = tmp;
            }
        }
        return dp[n];
    }
};

2、两个字符串的删除操作 583

相比于上一题,区别就是两个字符串都可以进行删除。

所以在推导递推公式时,当word1[i-1]==word2[j-1], d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] dp[i][j] = dp[i-1][j-1] dp[i][j]=dp[i−1][j−1];当word1[i-1]!=word2[j-1], d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) + 1 dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + 1 dp[i][j]=min(dp[i−1][j],dp[i][j−1])+1,会从删除word1[i-1]或者word2[j-1]之后取最小的结果,同时+1(删除操作)。

CPP 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector<vector<int>> dp(m + 1, vector<int>(n + 1));
        for(int i=0; i<=m; ++i)
            dp[i][0] = i;
        for(int i=1; i<=n; ++i)
            dp[0][i] = i;
        for(int i=1; i<=m; ++i){
            for(int j=1; j<=n; ++j){
                if(word1[i-1]==word2[j-1])
                    dp[i][j] = dp[i-1][j-1];
                else
                    dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + 1;
            }
        }
        return dp[m][n];
    }
};

空间复杂度优化,思路和之前提到的一样,采用变量记录左上方的值,代码如下:

CPP 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector<int> dp(n + 1);
        for(int i=1; i<=n; ++i)
            dp[i] = i;
        for(int i=1; i<=m; ++i){
            int leftup = dp[0];
            dp[0] = i;
            for(int j=1; j<=n; ++j){
                int tmp = dp[j];
                if(word1[i-1]==word2[j-1])
                    dp[j] = leftup;
                else
                    dp[j] = min(dp[j], dp[j-1]) + 1;
                leftup = tmp;
            }
        }
        return dp[n];
    }
};

3、编辑距离 72

直接DP,dp数组dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2的最近编辑距离。

递推公式推导,当word1[i - 1] == word2[j - 1]时,表示不需要进行操作, d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] dp[i][j] = dp[i-1][j-1] dp[i][j]=dp[i−1][j−1];当word1[i - 1] != word2[j - 1]时,我们可以对word2[j-1]进行删除(dp[i][j-1]),也可以对word1[i-1]进行删除(dp[i-1][j]), d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] dp[i][j] = dp[i-1][j-1] dp[i][j]=dp[i−1][j−1];还有将word1[i-1]或者word2[j-1]替换(dp[i-1][j-1]),所以 d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j − 1 ] , m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) ) + 1 dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1 dp[i][j]=min(dp[i−1][j−1],min(dp[i−1][j],dp[i][j−1]))+1

CPP 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector<vector<int>> dp(m+1, vector<int>(n+1));
        for(int i=1; i<=m; ++i)
            dp[i][0] = i; // 执行插入操作即可
        for(int i=1; i<=n; ++i)
            dp[0][i] = i;
        for(int i=1; i<=m; ++i){
            for(int j=1; j<=n; ++j){
                if(word1[i-1]==word2[j-1]){
                    dp[i][j] = dp[i-1][j-1];
                }else{
                    dp[i][j] = min(dp[i-1][j], min(dp[i][j-1], dp[i-1][j-1])) + 1;
                }
            }
        }
        return dp[m][n];
    }
};

空间复杂度优化,优化思路和之前一样,需要注意边界的初始化,代码如下:

CPP 复制代码
class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector<int> dp(n+1);
        for(int i=1; i<=n; ++i)
            dp[i] = i;
        for(int i=1; i<=m; ++i){
            int leftup = dp[0];
            dp[0] = i;
            for(int j=1; j<=n; ++j){
                int tmp = dp[j];
                if(word1[i-1]==word2[j-1]){
                    dp[j] = leftup;
                }else{
                    dp[j] = min(dp[j], min(dp[j-1], leftup)) + 1;
                }
                leftup = tmp;
            }
        }
        return dp[n];
    }
};

二、写在后面

字符串的编辑问题需要搞清楚是只能编辑一个字符串,还是两个字符串都可以编辑,这决定了递推公式的写法;同时需要注意初始化问题。另外,二维数组转一维数组较为套路化,需要细心。

相关推荐
对方正在长头发丿5 分钟前
LETTERS(DFS)
c++·笔记·算法·深度优先·图论
Qian_ShouYi6 分钟前
MATLAB 代码学习
学习·算法·matlab
lovebugs1 小时前
K8s面试第一篇:初识Kubernetes——核心概念与组件详解
后端·算法·面试
HelloDam1 小时前
基于元素小组的归并排序算法
后端·算法·排序算法
HelloDam1 小时前
基于连贯性算法的多边形扫描线生成(适用于凸多边形和凹多边形)【原理+java实现】
算法
uhakadotcom2 小时前
Apache Airflow入门指南:数据管道的强大工具
算法·面试·github
跳跳糖炒酸奶3 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
绵绵细雨中的乡音3 小时前
动态规划-第六篇
算法·动态规划
程序员黄同学3 小时前
动态规划,如何应用动态规划解决实际问题?
算法·动态规划
march_birds3 小时前
FreeRTOS 与 RT-Thread 事件组对比分析
c语言·单片机·算法·系统架构