如何正确安装Stable Diffusion Web UI以及对应的xFormers

本文是我总结的步骤,验证了几次保证是对的。因为正确的安装 Stable Diffusion Web UI 以及对应的 xFormers 实在是太麻烦了,官方和网上的步骤都是残缺和分散的,加上国内网络速度不理想,所以需要一些额外步骤,之前研究出来了,结果没记,重装系统之后又安装不好了,这次成功安装之后,就写下本文记录,这样一个小时绝对能装好了(网络速度快的话不超过十分钟)。

为什么需要xFormers

如果你想让 Stable Diffusion Web UI 生成图的时候需要的显存/内存以及时间少一些,那么需要 xFormers 来实现这点。xFormers 是 Meta(也就是 Facebook)开发的一个优化框架。

比如我使用的 RTX 3060 12GB,开不开 xFormers 的对比如下:

需要注意,尺寸并不是刚刚好够,而是我测试了一下常见分辨率的结果。因为生成内容如果不是常见分辨率,很多时候生成的图很奇怪。

不开 xFormers 开 xFormers
512x512速度 5.1 s 4.5 s
512x512时使用的显存 7608MiB 7606MiB
1024x1024速度 18.1 s 14.6 s
1024x1024时使用的显存 8866MiB 8094MiB

但是安装 xFormers 是其中的难点,你可能会看有人已经提到,xFormers 与 Pytorch 和 CUDA 版本需要对应起来。但是此时你可能依旧有两个问题:

  1. 对于如何找到版本对应关系,很多人给出的答案是找表。
  2. 按照一些表里的对应关系安装了,但还是有问题。

经过我的研究,这根本不是你需要考虑的。本文的安装步骤也不需要你记住对应的版本。关于 Python 及其包的解释除了"安装详情"中有展开外,最后的"多说点"部分也会说一些,感兴趣可以看看。

如果你只需要知道步骤,那么可以直接看"安装步骤总结"部分。

安装详情

下面我从头安装演示,其中会说明哪些步骤可能会导致的一些问题,所以希望你从头看,Python 的版本控制是一个挺复杂的问题。

首先是把仓库克隆下来:

复制代码
git clone [email protected]:AUTOMATIC1111/stable-diffusion-webui.git

仓库如果下不动,那么建议你改 GitHub 的 IP 下或者其他方法下,反正这部分必须是个 Git 仓库。zip 解压还需要更麻烦的处理,不推荐。

然后进入仓库,直接按照官方教程里的方法开始安装:

复制代码
$ cd stable-diffusion-webui/
$ ./webui.sh 

到打印下面这样的内容时,你可能会发现很卡,并且到最后会报错:

复制代码
............
............
Successfully installed pip-25.0.1

################################################################
Launching launch.py...

Launching launch.py...
################################################################
glibc version is 2.35
Check TCMalloc: libtcmalloc_minimal.so.4
libtcmalloc_minimal.so.4 is linked with libc.so,execute LD_PRELOAD=/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4
Python 3.10.12 (main, Jan 17 2025, 14:35:34) [GCC 11.4.0]
Version: v1.10.1
Commit hash: 82a973c04367123ae98bd9abdf80d9eda9b910e2
Installing torch and torchvision
Looking in indexes: https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple, https://download.pytorch.org/whl/cu121

这时候直接Crtl+C退出运行 (为什么这样后面说)。最后一行的Looking in indexes: https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple, https://download.pytorch.org/whl/cu121是在安装 Pytorch 的时候找的库地址,可以看到第一个时清华源的镜像,第二个是官方地址。由于清华源的 Pytorch 是 CPU 版本的,所以这时候会去官方找,找的时候又因为网络问题,这时候就开始卡和报错了。

这时候先解决一个国内网络导致的问题:Stable Diffusion Web UI 每次启动的时候都会检查版本,这时候它必须通过上面两个库看一下版本对不对,但是由于网络原因必定会卡。所以先来设置个镜像解决这个问题

阿里云的 Pytorch 镜像支持显卡版本,这时先打开仓库中的webui-user.sh文件,在下面这部分下面添加一句(这里的cu124是因为我的 CUDA 版本是 12.4,你按照你的来设置),并且在参数部分添加--xformers,启动 xFormers(这里我加了个--listen是因为我实在其他设备上访问了,这样弄了个公共链接):

复制代码
# Commandline arguments for webui.py, for example: export COMMANDLINE_ARGS="--medvram --opt-split-attention"
export COMMANDLINE_ARGS="--listen --xformers"

# install command for torch
export TORCH_COMMAND="pip install torch -f https://mirrors.aliyun.com/pytorch-wheels/cu124"

然后再次运行安装命令:

复制代码
$ ./webui.sh 

你会发现这时候开始正常的安装流程了,它会把需要的仓库和模型下载下来,这需要一段时间。

仓库如果下不动,那么建议你改 GitHub 的 IP 下,反正它同样需要是个 Git 仓库。
模型如果下不动,可以想办法下载后挪到对应的位置(复制或者链接),这个是可以的。

可以使用HF-Mirror,方法你看看文档就知道了。

等安装好了之后,会启动 Stable Diffusion Web UI,这时候你在网页生成图会出现下面的内容:

终端显示:

复制代码
....
....
        raise NotImplementedError(msg)
    NotImplementedError: No operator found for `memory_efficient_attention_forward` with inputs:
         query       : shape=(2, 4096, 8, 40) (torch.float16)
         key         : shape=(2, 4096, 8, 40) (torch.float16)
         value       : shape=(2, 4096, 8, 40) (torch.float16)
         attn_bias   : <class 'NoneType'>
         p           : 0.0
    `decoderF` is not supported because:
        xFormers wasn't build with CUDA support
        attn_bias type is <class 'NoneType'>
        operator wasn't built - see `python -m xformers.info` for more info
    `[email protected]` is not supported because:
        xFormers wasn't build with CUDA support
        operator wasn't built - see `python -m xformers.info` for more info
    `tritonflashattF` is not supported because:
        xFormers wasn't build with CUDA support
        operator wasn't built - see `python -m xformers.info` for more info
        triton is not available
        Only work on pre-MLIR triton for now
    `cutlassF` is not supported because:
        xFormers wasn't build with CUDA support
        operator wasn't built - see `python -m xformers.info` for more info
    `smallkF` is not supported because:
        max(query.shape[-1] != value.shape[-1]) > 32
        xFormers wasn't build with CUDA support
        dtype=torch.float16 (supported: {torch.float32})
        operator wasn't built - see `python -m xformers.info` for more info
        unsupported embed per head: 40

这段错误的意思就是 xFormers 与 CUDA 版本不对应,现在我们来解决这个问题。

首先使用Crtl+C退出运行 。这时候你别用提示的python -m xformers.info命令来检查,./venv/bin/python -m xformers.info命令(为什么这样我稍后说),它的输出如下:

复制代码
$ ./venv/bin/python -m xformers.info
WARNING[XFORMERS]: xFormers can't load C++/CUDA extensions. xFormers was built for:
    PyTorch 2.1.2+cu121 with CUDA 1201 (you have 2.6.0+cu124)
    Python  3.10.13 (you have 3.10.12)
  Please reinstall xformers (see https://github.com/facebookresearch/xformers#installing-xformers)
  Memory-efficient attention, SwiGLU, sparse and more won't be available.
  Set XFORMERS_MORE_DETAILS=1 for more details
.....
.....

你会发现它告诉你了你当前的 CUDA、Pytorch 与 xFormers 需要的情况:它需要PyTorch 2.1.2+cu121(Python 的那个提示不管它),但其实你也不用记这个版本号,这里只是告诉你如何找到它是因为版本出错的。

现在不要使用任何命令安装,这里需要先解释一下上面的两个"稍后"。

众所周知,Python 每个小版本的不同就可能导致一些重大改变,所以很多项目使用的 Python 版本是强制指定的,这时候就有了很多虚拟环境,比如 Miniconda,但是 Python 自己也有个虚拟环境,这里正是用到了这一点。你这时候查看项目目录,会发现多了一个venv目录,上面查看 xFormers 信息的时候使用的python也是这个虚拟环境内的。

注意不要直接用这个目录下的pip安装,你会发现会报错。

现在我们需要进入这个虚拟环境:

复制代码
source ./venv/bin/activate

然后在虚拟环境中(你命令行最前面会出现一个(venv)),再使用下面的命令安装(同样,你需要根据你的 CUDA 版本修改镜像链接):

复制代码
pip install -U xformers -f https://mirrors.aliyun.com/pytorch-wheels/cu124

你可以看到,你不需要指定 xformers 的版本就可以安装,因为这里使用的-U是将xformers更新成cu124对应的版本了,前面安装torch的时候也是用的这个版本,不需要你去查找。

此后,不管你是不是在这个虚拟环境内,会发现它都使用的都是正确的 xFormers,也就是可以正常运行。

如果你想了解如何使用 Stable Diffusion Web UI,可以看我的这篇博客:文本生图的提示词prompt和参数如何设置(基于Animagine XL V3.1)

安装步骤总结

第一步,克隆仓库:

复制代码
git clone [email protected]:AUTOMATIC1111/stable-diffusion-webui.git

第二步,先让他生成虚拟环境,然后卡住的时候使用Crtl+C退出运行:

复制代码
./webui.sh

第三步,在webui-user.sh修改参数和镜像:

复制代码
# Commandline arguments for webui.py, for example: export COMMANDLINE_ARGS="--medvram --opt-split-attention"
export COMMANDLINE_ARGS="--listen --xformers"

# install command for torch
export TORCH_COMMAND="pip install torch -f https://mirrors.aliyun.com/pytorch-wheels/cu124"

第四步,再次运行,安装需要的仓库和包:

复制代码
./webui.sh 

第五步,进入虚拟环境:

复制代码
source ./venv/bin/activate

第六步,在虚拟环境中安装正确版本的 xFormers:

复制代码
pip install -U xformers -f https://mirrors.aliyun.com/pytorch-wheels/cu124

第六步,运行检查:

复制代码
./webui.sh 

多说点

这里多说点,你的设备上大概率存在多个版本的 Python 以及 PIP。在这种多版本的情况下,你需要知道你在用哪个,要用哪个,谁管谁。

第一,你要确定是否有虚拟环境。这点你可以看命令行前面的内容就知道了,比如 conda 的(base)以及本文的(venv)

第二,你要确定当前默认 Python 版本是哪个。这点你可以使用Python --version查看。

第三,你的默认 PIP 和 Python 不一定是一对的,这就导致你使用pip安装的包在python中无法使用(pip就是默认的 PIP,python是默认的 Python)。这个使用,需要你使用下面的样式安装:

复制代码
python -m pip install <包>

这时候安装的包就在默认的python中。同样的道理,你可以把python改成某个 Python 版本的路径。

第四,善用 PIP 的-U选项。虽然-U选项是更新的意思,但是由于它是查找某些包管理库来看最新版本的,所以它也可以"回退",就像本文使用的那样。此外,你在强制版本的使用,也可以使用这个选项,否则由于强制版本小于当前版本,导致没有任何操作。

希望能帮到有需要的人~

相关推荐
Icoolkj12 小时前
深入了解 Stable Diffusion:AI 图像生成的奥秘
人工智能·stable diffusion
这是一个懒人1 天前
mac 快速安装stable diffusion webui
macos·stable diffusion
璇转的鱼1 天前
Stable Diffusion进阶之Controlnet插件使用
人工智能·ai作画·stable diffusion·aigc·ai绘画
AloneCat20122 天前
stable Diffusion模型结构
stable diffusion
西西弗Sisyphus2 天前
Stable Diffusion XL 文生图
stable diffusion
霍志杰4 天前
stable-diffusion windows本地部署
windows·stable diffusion
昨日之日20064 天前
ACE-Step - 20秒生成4分钟完整歌曲,音乐界的Stable Diffusion,支持50系显卡 本地一键整合包下载
计算机视觉·stable diffusion·音视频
白熊1884 天前
【图像大模型】Stable Diffusion Web UI:深度解析与实战指南
ui·stable diffusion
西西弗Sisyphus6 天前
基于Stable Diffusion XL模型进行文本生成图像的训练
stable diffusion
阿维的博客日记6 天前
VAE和Stable Diffusion的关系
stable diffusion·vae