LSTM 学习笔记 之pytorch调包每个参数的解释

0、 LSTM 原理

整理优秀的文章
LSTM入门例子:根据前9年的数据预测后3年的客流(PyTorch实现)
[干货]深入浅出LSTM及其Python代码实现

整理视频
李毅宏手撕LSTM
[双语字幕]吴恩达深度学习deeplearning.ai

1 Pytorch 代码

这里直接调用了nn.lstm

python 复制代码
 self.lstm = nn.LSTM(input_size, hidden_size, num_layers)  # utilize the LSTM model in torch.nn

下面作为初学者解释一下里面的3个参数
input_size: 这个就是输入的向量的长度or 维度,如一个单词可能占用20个维度。
hidden_size: 这个是隐藏层,其实我感觉有点全连接的意思,这个层的维度影响LSTM 网络输入的维度,换句话说,LSTM接收的数据维度不是输入什么维度就是什么维度,而是经过了隐藏层,做了一个维度的转化。

num_layers: 这里就是说堆叠了几个LSMT 结构。

2 网络定义

python 复制代码
class LstmRNN(nn.Module):
    """
        Parameters:
        - input_size: feature size
        - hidden_size: number of hidden units
        - output_size: number of output
        - num_layers: layers of LSTM to stack
    """

    def __init__(self, input_size, hidden_size=1, output_size=1, num_layers=1):
        super().__init__()

        self.lstm = nn.LSTM(input_size, hidden_size, num_layers)  # utilize the LSTM model in torch.nn
        self.forwardCalculation = nn.Linear(hidden_size, output_size)

    def forward(self, _x):
        x, _ = self.lstm(_x)  # _x is input, size (seq_len, batch, input_size)
        s, b, h = x.shape  # x is output, size (seq_len, batch, hidden_size)
        x = x.view(s * b, h)
        x = self.forwardCalculation(x)
        x = x.view(s, b, -1)
        return x

3 网络初始化

我们定义一个网络导出onnx ,观察 网络的具体结构

python 复制代码
INPUT_FEATURES_NUM = 100
OUTPUT_FEATURES_NUM = 13
lstm_model = LstmRNN(INPUT_FEATURES_NUM, 16, output_size=OUTPUT_FEATURES_NUM, num_layers=2)  # 16 hidden units
print(lstm_model)
save_onnx_path= "weights/lstm_16.onnx"
input_data = torch.randn(1,150,100)

input_names = ["images"] + ["called_%d" % i for i in range(2)]
output_names = ["prob"]
torch.onnx.export(
    lstm_model,
    input_data,
    save_onnx_path,
    verbose=True,
    input_names=input_names,
    output_names=output_names,
    opset_version=12
    )

可以看到 LSTM W 是1x64x100;这个序列150没有了 是不是说150序列是一次一次的送的呢,所以在网络中没有体现;16是hidden,LSTM里面的W是64,这里存在一个4倍的关系。

我想这个关系和LSTM的3个门(输入+输出+遗忘+C^)有联系。

这里输出我们设置的13,如图 onnx 网络结构可视化显示也是13,至于这个150,或许就是输入有150个词,输出也是150个词吧。

至于LSTM的层数设置为2,则表示有2个LSTM堆叠。

4 网络提取

另外提取 网络方便看 每一层的维度,代码如下。

python 复制代码
import onnx
from onnx import helper, checker
from onnx import TensorProto
import re
import argparse
model = "./weights/lstm_16.onnx"
output_model_path = "./weights/lstm_16_e.onnx"

onnx_model = onnx.load(model)
#Flatten
onnx.utils.extract_model(model, output_model_path, ['images'],['prob'])
相关推荐
半导体守望者2 小时前
TR帝尔编码器GSD文件 PROFIBUS XML PROFINET EtherCAT 文件 ADH CDH CMV等
xml·经验分享·笔记·机器人·自动化·制造
路弥行至2 小时前
C语言入门教程 | 第一讲:C语言零基础入门教程:第一个程序到变量运算详解
c语言·开发语言·经验分享·笔记·单片机·其他·课程设计
myw0712053 小时前
Leetcode94.二叉数的中序遍历练习
c语言·数据结构·笔记·算法
丰年稻香3 小时前
神经网络反向传播中的学习率:从理论到实践的全面解析
人工智能·神经网络·学习
淬炼之火3 小时前
笔记:ReID 综述
笔记
小矮强3 小时前
飞马无人机正射/倾斜影像数据预处理
经验分享·笔记·无人机
Dyanic3 小时前
FreeFusion:基于交叉重构学习的红外与可见光图像融合
学习·重构
软件算法开发4 小时前
基于蜣螂优化的LSTM深度学习网络模型(DBO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·dbo-lstm·蜣螂优化·一维时间序列预测
wan5555cn5 小时前
无人机表演行业二手设备市场与性价比分析
笔记·深度学习·音视频·无人机
njsgcs5 小时前
RoadCLIP 笔记 针对自动驾驶优化的 CLIP 变体 vlm
笔记