
|-----------|
| 🚀 算法题 🚀 |
🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯
|-----------|
| 🚀 算法题 🚀 |
🍔 目录
-
- [🚩 题目链接](#🚩 题目链接)
- [⛲ 题目描述](#⛲ 题目描述)
- [🌟 求解思路&实现代码&运行结果](#🌟 求解思路&实现代码&运行结果)
-
- [⚡ 二分](#⚡ 二分)
-
- [🥦 求解思路](#🥦 求解思路)
- [🥦 实现代码](#🥦 实现代码)
- [🥦 运行结果](#🥦 运行结果)
- [💬 共勉](#💬 共勉)
🚩 题目链接
⛲ 题目描述
给你一个整数数组 nums ,其中 nums[i] 表示第 i 个袋子里球的数目。同时给你一个整数 maxOperations 。
你可以进行如下操作至多 maxOperations 次:
- 选择任意一个袋子,并将袋子里的球分到 2 个新的袋子中,每个袋子里都有 正整数 个球。
比方说,一个袋子里有 5 个球,你可以把它们分到两个新袋子里,分别有 1 个和 4 个球,或者分别有 2 个和 3 个球。 - 你的开销是单个袋子里球数目的 最大值 ,你想要 最小化 开销。
请你返回进行上述操作后的最小开销。
示例 1:
输入:nums = [9], maxOperations = 2
输出:3
解释:
- 将装有 9 个球的袋子分成装有 6 个和 3 个球的袋子。[9] -> [6,3] 。
- 将装有 6 个球的袋子分成装有 3 个和 3 个球的袋子。[6,3] -> [3,3,3] 。
装有最多球的袋子里装有 3 个球,所以开销为 3 并返回 3 。
示例 2:
输入:nums = [2,4,8,2], maxOperations = 4
输出:2
解释:
- 将装有 8 个球的袋子分成装有 4 个和 4 个球的袋子。[2,4,8,2] -> [2,4,4,4,2] 。
- 将装有 4 个球的袋子分成装有 2 个和 2 个球的袋子。[2,4,4,4,2] -> [2,2,2,4,4,2] 。
- 将装有 4 个球的袋子分成装有 2 个和 2 个球的袋子。[2,2,2,4,4,2] -> [2,2,2,2,2,4,2] 。
- 将装有 4 个球的袋子分成装有 2 个和 2 个球的袋子。[2,2,2,2,2,4,2] -> [2,2,2,2,2,2,2,2] 。
装有最多球的袋子里装有 2 个球,所以开销为 2 并返回 2 。
示例 3:
输入:nums = [7,17], maxOperations = 2
输出:7
提示:
1 <= nums.length <= 105
1 <= maxOperations, nums[i] <= 109
🌟 求解思路&实现代码&运行结果
⚡ 二分
🥦 求解思路
-
二分查找:
-
使用二分查找在 [0, max(nums)] 范围内搜索最小的 m。
-
对于每个中间值 mid,检查是否可以通过最多 maxOperations 次操作将所有袋子的球数限制在 mid 以内。
-
-
检查函数 check:
-
计算将所有袋子的球数限制在 mid 以内所需的最少操作次数。
-
如果所需操作次数小于等于 maxOperations,则返回 true,否则返回 false。
-
-
有了基本的思路,接下来我们就来通过代码来实现一下。
🥦 实现代码
java
class Solution {
public int minimumSize(int[] nums, int maxOperations) {
int max = Arrays.stream(nums).max().getAsInt();
int left = 0;
int right = max;
while (left + 1 < right) {
int mid = (left + right) >>> 1;
if (check(nums, maxOperations, mid)) {
right = mid;
} else {
left = mid;
}
}
return right;
}
private boolean check(int[] nums, int maxOperations, int m) {
long cnt = 0;
for (int x : nums) {
cnt += (x - 1) / m;
}
return cnt <= maxOperations;
}
}
🥦 运行结果

💬 共勉
|----------------------------------|
| 最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉! |

