机器学习·决策树

前言

决策树是分类与回归问题中常用的方法之一。其实不仅是机器学习领域,在每天的日常决策中,我们都在使用决策树。流程图实际上就是决策树的可视化表示。


一、基本概念
  1. 决策树原理

    • 通过一系列 逻辑规则(特征分割条件) 构建树形结构,用于分类或回归。

    • 每个内部节点表示一个特征判断,分支表示判断结果,叶节点表示最终类别或数值。

  2. 关键术语

    • 熵(Entropy) :衡量系统不确定性

      \( S = -\sum_{i=1}^N p_i \log_2 p_i \)

      \( p_i \) 为第 \( i \) 类样本的比例。

    • 信息增益(Information Gain) :分割后熵的减少量

      \( IG(Q) = S_0 - \sum_{i=1}^q \frac{N_i}{N} S_i \)

    • 基尼系数(Gini Index) :衡量数据不纯度

      \( G = 1 - \sum_{k} (p_k)^2 \)

  3. 分割质量指标对比

    指标 公式 特点
    信息增益(熵) \( IG = S_0 - \sum \frac{N_i}{N} S_i \) 对类别分布敏感
    基尼系数 \( G = 1 - \sum p_k^2 \) 计算更高效,与熵效果相似
    错分率 \( E = 1 - \max p_k \) 不推荐使用,对概率变化不敏感

二、决策树构建算法
  1. 核心思想

    • 贪婪算法 :每一步选择 信息增益最大(或基尼系数最小)的特征进行分割。

    • 递归分裂:重复分割直到满足停止条件(如节点纯度达标、深度限制等)。

  2. 常用算法

    算法 特点
    ID3 使用信息增益,仅支持分类,无法处理连续特征和缺失值
    C4.5 改进 ID3,支持连续特征、缺失值处理,引入信息增益率防止过拟合
    CART 使用基尼系数(分类)或均方误差(回归),支持分类和回归,生成二叉树
  3. 停止条件

    • 节点样本数小于阈值

    • 节点纯度达到要求(如熵/基尼系数接近 0)

    • 树达到预设最大深度


三、分类与回归应用
  1. 分类树

    • 目标:预测离散类别标签。

    • 质量指标:熵或基尼系数。

    • 示例代码(sklearn)

      python 复制代码
      from sklearn.tree import DecisionTreeClassifier
      clf = DecisionTreeClassifier(criterion='gini', max_depth=3)
      clf.fit(X_train, y_train)
  2. 回归树

    • 目标:预测连续数值。

    • 质量指标 :均方误差(MSE)

      \( D = \frac{1}{\ell} \sum_{i=1}^\ell (y_i - \bar{y})^2 \)

      \( \bar{y} \) 为叶节点样本均值。

    • 示例代码(sklearn)

      python 复制代码
      from sklearn.tree import DecisionTreeRegressor
      reg = DecisionTreeRegressor(max_depth=3)
      reg.fit(X_train, y_train)

四、过拟合与剪枝
  1. 过拟合表现

    • 决策树过深,叶节点样本过少,模型在训练集上完美拟合但在测试集上效果差。
  2. 解决方法

    • 预剪枝(Pre-pruning):提前限制模型复杂度

      • max_depth:树的最大深度

      • min_samples_leaf:叶节点最少样本数

      • max_features:分割时考虑的最大特征数

    • 后剪枝(Post-pruning):先构建完整树,再自底向上合并节点(如 CCP 方法)。


五、决策树的优缺点
优点 缺点
可解释性强,规则可视化 对噪声敏感,易过拟合
支持数值和类别特征 边界为轴平行超平面,可能不如其他模型灵活
训练和预测速度快 数据微小变化可能导致树结构剧变(不稳定)
无需特征标准化 无法外推(只能预测训练集特征范围内的值)

六、实战注意事项
  1. 参数调优

    • 使用交叉验证选择最佳 max_depthmin_samples_leaf 等参数。

    • 示例代码:

      python 复制代码
      from sklearn.model_selection import GridSearchCV
      params = {'max_depth': [3, 5, 7], 'min_samples_leaf': [1, 5, 10]}
      grid = GridSearchCV(DecisionTreeClassifier(), params, cv=5)
      grid.fit(X, y)
  2. 可视化决策树

    • 使用 sklearn.tree.plot_tree 或第三方库(如 Graphviz)生成树结构图。

    • 示例代码:

      python 复制代码
      from sklearn.tree import plot_tree
      plt.figure(figsize=(20, 10))
      plot_tree(clf, filled=True, feature_names=X.columns)
      plt.show()

七、应用
  1. 分类问题:客户信用评估、疾病诊断、垃圾邮件识别。

  2. 回归问题:房价预测、销量趋势分析。

  3. 特征重要性分析:通过节点分裂次数或信息增益量评估特征重要性。

相关推荐
智奇数美43 分钟前
“成本减法”与“效率乘法”——AI智能重构企业通信格局
人工智能·智能手机·信息与通信
技术闲聊DD1 小时前
机器学习(1)- 机器学习简介
人工智能·机器学习
mwq301231 小时前
GPT-2 中的残差权重初始化
人工智能
mwq301231 小时前
Transformer : 深度神经网络中的残差连接 (Residual Connection)
人工智能
信田君95271 小时前
瑞莎星瑞(Radxa Orion O6) 基于 Android OS 使用 NPU的图片模糊查找APP 开发
android·人工智能·深度学习·神经网络
StarPrayers.2 小时前
卷积神经网络(CNN)入门实践及Sequential 容器封装
人工智能·pytorch·神经网络·cnn
周末程序猿2 小时前
谈谈上下文工程(Context Engineering)
人工智能
一水鉴天2 小时前
整体设计 逻辑系统程序 之29 拼语言+ CNN 框架核心定位、三阶段程序与三种交换模式配套的方案讨论 之2
人工智能·神经网络·cnn
海森大数据2 小时前
AI破解数学界遗忘谜题:GPT-5重新发现尘封二十年的埃尔德什问题解法
人工智能·gpt