结合 deepseek,通义千问的答案理解opencv 估计刚体变换矩阵(Ransac)

cpp 复制代码
/*
 * Compute
 *  x    c -s    X    t1
 *    =       *     +
 *  y    s  c    Y    t2
 *
 *  - every element in _m1 contains (X,Y), which are called source points
 *  - every element in _m2 contains (x,y), which are called destination points
 *  - _model is of size 2x3, which contains
 *    c  -s  t1
 *    s   c  t2
 */
class AffinePartial2DEstimatorCallback : public Affine2DEstimatorCallback
{
public:
    int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const CV_OVERRIDE
    {
        Mat m1 = _m1.getMat(), m2 = _m2.getMat();
        const Point2f* from = m1.ptr<Point2f>();
        const Point2f* to   = m2.ptr<Point2f>();
        _model.create(2, 3, CV_64F);
        Mat M_mat = _model.getMat();
        double *M = M_mat.ptr<double>();

        // we need only 2 points to estimate transform
        double x1 = from[0].x;
        double y1 = from[0].y;
        double x2 = from[1].x;
        double y2 = from[1].y;

        double X1 = to[0].x;
        double Y1 = to[0].y;
        double X2 = to[1].x;
        double Y2 = to[1].y;

        /*
        we are solving AS = B
            | x1 -y1 1 0 |
            | y1  x1 0 1 |
        A = | x2 -y2 1 0 |
            | y2  x2 0 1 |
        B = (X1, Y1, X2, Y2).t()
        we solve that analytically
        */
        double d = 1./((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));

        // solution vector
        //a=S0 Scalexcos(theta)=|V|.|v|.cos(theta)/(|V|.|v|.cos(0))
        double S0 = d * ( (X1-X2)*(x1-x2) + (Y1-Y2)*(y1-y2) );
        //b=Scalexsin(theta)=|V|x|v|.sin(theta)/(|V|.|v|.cos(0))
        double S1 = d * ( (Y1-Y2)*(x1-x2) - (X1-X2)*(y1-y2) );
        //S2=tx=X1−(ax1−by1),a,b带入验证
        double S2 = d * ( (Y1-Y2)*(x1*y2 - x2*y1) - (X1*y2 - X2*y1)*(y1-y2) - (X1*x2 - X2*x1)*(x1-x2) );
        //S3=ty=Y1−(bx1+ay1),a,b带入验证
        double S3 = d * (-(X1-X2)*(x1*y2 - x2*y1) - (Y1*x2 - Y2*x1)*(x1-x2) - (Y1*y2 - Y2*y1)*(y1-y2) );

        // set model, rotation part is antisymmetric
        M[0] = M[4] = S0;
        M[1] = -S1;
        M[2] = S2;
        M[3] = S1;
        M[5] = S3;
        return 1;
    }
};

个人感觉deepseek的答案确实更好,但代码注释中的验证理解还是靠自己的仅有的一点数学知识得以完成,特别是S2,S3,虽然AI 都给出了代入方程验证的提示

相关推荐
rhy2006052041 分钟前
SAM的低秩特性
人工智能·算法·机器学习·语言模型
SelectDB技术团队1 小时前
岚图汽车 x Apache Doris : 海量车联网数据实时分析实践
数据仓库·人工智能·数据分析·汽车·apache
FIT2CLOUD飞致云1 小时前
推出工具商店,工作流新增支持循环、意图识别、文生视频和图生视频节点,MaxKB v2.2.0版本发布
人工智能·开源·deepseek
胖墩会武术1 小时前
大模型效果优化方案(经验分享)
人工智能·经验分享·python·语言模型
双普拉斯1 小时前
Spring WebFlux调用生成式AI提供的stream流式接口,实现返回实时对话
java·vue.js·人工智能·后端·spring
Sunhen_Qiletian1 小时前
用PyTorch实现CBOW模型:从原理到实战的Word2Vec入门指南
人工智能·pytorch·word2vec
진영_2 小时前
深度学习打卡第N7周:调用Gensim库训练Word2Vec模型
人工智能·深度学习·word2vec
黄啊码2 小时前
【黄啊码】这份AI编程心法,希望对你有用
人工智能
IT_陈寒2 小时前
SpringBoot实战:这5个高效开发技巧让我节省了50%编码时间!
前端·人工智能·后端
腾飞开源3 小时前
《AI智能体实战开发教程(从0到企业级项目落地)》全网上线|CSDN & B站同步首发
人工智能·ai智能体开发·全网首发·新课上线·粉丝专属优惠·全完结·企业级项目落地