Python in Excel高级分析:一键RFM分析

RFM分析是一种常见的数据分析方法,普遍应用于Excel、powerbi、python进行数据分析,但是往往要么比较复杂,要么根本不是人能学懂的。

现在,因为Excel中的Python高级分析来了,我们可以很从容地在Excel中,使用自然语言一键对数据进行RFM分析。

过程方法

在Excel的copilot侧边栏中,有一个"高级分析"按钮,可以使用python获取更深入的数据分析结果:

点击此按钮后,出现"启动高级分析"的按钮,点击启动:

地址栏会显示已经进入PY环境,并且将数据整理为dataframe:

接下来就可以对此数据进行提问分析了。

比如,我们直接在copilot中提问"能否使用ABC分析法或者RFM分析法,将用户进行分类打分排序",很快,copilot给我们展示了整个流程:

  • 第一步:深度思考计算流程;

  • 第二步:自动生成Python代码;

  • 第三步:运行Python代码输出结果

以下是自动生成的Python代码:

复制代码
"=PY(""#使用RFM分析法对用户进行分类打分排序# 使用RFM分析法对用户进行分类打分排序# 计算每个用户的R(最近一次购买时间)、F(购买频率)和M(购买金额)import datetime as dt
_2_df=xl("表2[[#标题],[#数据]]", headers=True)
# 当前日期now = dt.datetime.now()
# 计算RFM值rfm = _2_df.groupby('客户ID').agg({    '订单日期': lambda x: (now - x.max()).days,    '订单ID': 'count',    '销售额': 'sum'}).reset_index()
# 重命名列rfm.columns = ['客户ID', 'R', 'F', 'M']
# 对RFM值进行评分rfm['R_Score'] = pd.qcut(rfm['R'], 5, labels=[5, 4, 3, 2, 1])rfm['F_Score'] = pd.qcut(rfm['F'], 5, labels=[1, 2, 3, 4, 5])rfm['M_Score'] = pd.qcut(rfm['M'], 5, labels=[1, 2, 3, 4, 5])
# 计算RFM总分rfm['RFM_Score'] = rfm[['R_Score', 'F_Score', 'M_Score']].sum(axis=1)
# 按RFM总分排序rfm = rfm.sort_values('RFM_Score', ascending=False)
# 显示结果rfm"",1)"

右侧边栏输出效果:

输出在Excel表内的结果,dataframe默认显示了前后各5行:

如果想要显示所有的数据,可以右键dataframe单元格,选择"Python输出"→"Excel值":

就会得到所有数据的展示:

RFM分析的评分可以作为数据分析的最终结果,也可以作为下一步继续分析的依据。

结论

本文介绍了使用Copilot in Excel with Python高级数据分析的超级能力,并展示了一键实现RFM分析的流程。这项能力大大缩减了用户对数据进行复杂分析的时间,并且让用户可以在对Excel公式毫不熟悉、对Python代码毫不熟悉、不需要安装Python软件或配置环境的情况下,可以顺利地完成复杂数据分析要求。

Excel内置,无需安装任何其他插件,copilot原生,甚至不需要安装python,就可以直接在Excel中,使用最强大的AI工具,自然语言直接生成可以拿来用的可视化图表,这一切,只需要订阅Copilot for Microsoft 365商业版。

不要相信什么ChatGPT、DeepSeek等各种大模型嵌入插件调用,然后生成vba代码,再插入word、Excel和PPT等。看上去好像这个免费,那个免费,免费的才是最贵的。

虽然它们的确很强,但是,只要在Microsoft office中,没人打得过copilot:

如何快速开始享用Copilot for Microsoft 365?****

相关推荐
IT_Beijing_BIT1 小时前
TensorFlow Keras
人工智能·tensorflow·keras
workflower1 小时前
FDD(Feature Driven Development)特征驱动开发
大数据·数据库·驱动开发·需求分析·个人开发
mit6.8241 小时前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
张较瘦_1 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
小雨青年2 小时前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互
西西弗Sisyphus2 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
仙人掌_lz2 小时前
Multi-Agent的编排模式总结/ Parlant和LangGraph差异对比
人工智能·ai·llm·原型模式·rag·智能体
背包客研究2 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习
门框研究员3 小时前
AI基础设施的临界点:算力、资本与政策的三重博弈
人工智能