Python in Excel高级分析:一键RFM分析

RFM分析是一种常见的数据分析方法,普遍应用于Excel、powerbi、python进行数据分析,但是往往要么比较复杂,要么根本不是人能学懂的。

现在,因为Excel中的Python高级分析来了,我们可以很从容地在Excel中,使用自然语言一键对数据进行RFM分析。

过程方法

在Excel的copilot侧边栏中,有一个"高级分析"按钮,可以使用python获取更深入的数据分析结果:

点击此按钮后,出现"启动高级分析"的按钮,点击启动:

地址栏会显示已经进入PY环境,并且将数据整理为dataframe:

接下来就可以对此数据进行提问分析了。

比如,我们直接在copilot中提问"能否使用ABC分析法或者RFM分析法,将用户进行分类打分排序",很快,copilot给我们展示了整个流程:

  • 第一步:深度思考计算流程;

  • 第二步:自动生成Python代码;

  • 第三步:运行Python代码输出结果

以下是自动生成的Python代码:

复制代码
"=PY(""#使用RFM分析法对用户进行分类打分排序# 使用RFM分析法对用户进行分类打分排序# 计算每个用户的R(最近一次购买时间)、F(购买频率)和M(购买金额)import datetime as dt
_2_df=xl("表2[[#标题],[#数据]]", headers=True)
# 当前日期now = dt.datetime.now()
# 计算RFM值rfm = _2_df.groupby('客户ID').agg({    '订单日期': lambda x: (now - x.max()).days,    '订单ID': 'count',    '销售额': 'sum'}).reset_index()
# 重命名列rfm.columns = ['客户ID', 'R', 'F', 'M']
# 对RFM值进行评分rfm['R_Score'] = pd.qcut(rfm['R'], 5, labels=[5, 4, 3, 2, 1])rfm['F_Score'] = pd.qcut(rfm['F'], 5, labels=[1, 2, 3, 4, 5])rfm['M_Score'] = pd.qcut(rfm['M'], 5, labels=[1, 2, 3, 4, 5])
# 计算RFM总分rfm['RFM_Score'] = rfm[['R_Score', 'F_Score', 'M_Score']].sum(axis=1)
# 按RFM总分排序rfm = rfm.sort_values('RFM_Score', ascending=False)
# 显示结果rfm"",1)"

右侧边栏输出效果:

输出在Excel表内的结果,dataframe默认显示了前后各5行:

如果想要显示所有的数据,可以右键dataframe单元格,选择"Python输出"→"Excel值":

就会得到所有数据的展示:

RFM分析的评分可以作为数据分析的最终结果,也可以作为下一步继续分析的依据。

结论

本文介绍了使用Copilot in Excel with Python高级数据分析的超级能力,并展示了一键实现RFM分析的流程。这项能力大大缩减了用户对数据进行复杂分析的时间,并且让用户可以在对Excel公式毫不熟悉、对Python代码毫不熟悉、不需要安装Python软件或配置环境的情况下,可以顺利地完成复杂数据分析要求。

Excel内置,无需安装任何其他插件,copilot原生,甚至不需要安装python,就可以直接在Excel中,使用最强大的AI工具,自然语言直接生成可以拿来用的可视化图表,这一切,只需要订阅Copilot for Microsoft 365商业版。

不要相信什么ChatGPT、DeepSeek等各种大模型嵌入插件调用,然后生成vba代码,再插入word、Excel和PPT等。看上去好像这个免费,那个免费,免费的才是最贵的。

虽然它们的确很强,但是,只要在Microsoft office中,没人打得过copilot:

如何快速开始享用Copilot for Microsoft 365?****

相关推荐
音视频牛哥1 小时前
打通视频到AI的第一公里:轻量RTSP服务如何重塑边缘感知入口?
人工智能·计算机视觉·音视频·大牛直播sdk·机器视觉·轻量级rtsp服务·ai人工智能
Wendy14412 小时前
【灰度实验】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉
中杯可乐多加冰2 小时前
五大低代码平台横向深度测评:smardaten 2.0领衔AI原型设计
人工智能
无线图像传输研究探索2 小时前
单兵图传终端:移动场景中的 “实时感知神经”
网络·人工智能·5g·无线图传·5g单兵图传
zzywxc7873 小时前
AI在编程、测试、数据分析等领域的前沿应用(技术报告)
人工智能·深度学习·机器学习·数据挖掘·数据分析·自动化·ai编程
铭keny4 小时前
YOLOv8 基于RTSP流目标检测
人工智能·yolo·目标检测
墨尘游子4 小时前
11-大语言模型—Transformer 盖楼,BERT 装修,RoBERTa 直接 “拎包入住”|预训练白话指南
人工智能·语言模型·自然语言处理
金井PRATHAMA4 小时前
主要分布于内侧内嗅皮层的层Ⅲ的网格-速度联合细胞(Grid × Speed Conjunctive Cells)对NLP中的深层语义分析的积极影响和启示
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·知识图谱
天道哥哥4 小时前
InsightFace(RetinaFace + ArcFace)人脸识别项目(预训练模型,鲁棒性很好)
人工智能·目标检测
幻风_huanfeng5 小时前
学习人工智能所需知识体系及路径详解
人工智能·学习