使用Python的OpenCV视觉库和MediaPipe面部检测模型和姿态检测模型深度学习框架来实现眼动检测和姿态检测

在Python中实现眼动检测和姿态检测通常需要使用计算机视觉库和深度学习框架。以下是一个简单的实现思路,使用OpenCV和MediaPipe库来实现眼动检测和姿态检测。

  1. 安装依赖库

首先,确保你已经安装了所需的库:

pip install opencv-python mediapipe

  1. 眼动检测

眼动检测可以通过检测眼睛的位置和瞳孔的位置来实现。MediaPipe提供了一个面部检测模型,可以用来检测眼睛的位置。

import cv2

import mediapipe as mp

初始化MediaPipe面部检测模块

mp_face_mesh = mp.solutions.face_mesh

face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5)

初始化摄像头

cap = cv2.VideoCapture(0)

while cap.isOpened():

ret, frame = cap.read()

if not ret:

break

将图像转换为RGB格式

image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

处理图像并获取面部网格

results = face_mesh.process(image)

将图像转换回BGR格式以便显示

image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

if results.multi_face_landmarks:

for face_landmarks in results.multi_face_landmarks:

获取眼睛的关键点

left_eye = face_landmarks.landmark[33] # 左眼中心

right_eye = face_landmarks.landmark[263] # 右眼中心

在图像上绘制眼睛位置

h, w, c = image.shape

left_eye_pos = (int(left_eye.x * w), int(left_eye.y * h))

right_eye_pos = (int(right_eye.x * w), int(right_eye.y * h))

cv2.circle(image, left_eye_pos, 5, (0, 255, 0), -1)

cv2.circle(image, right_eye_pos, 5, (0, 255, 0), -1)

显示图像

cv2.imshow('Eye Tracking', image)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

  1. 姿态检测

姿态检测可以通过检测身体的关键点来实现。MediaPipe提供了一个姿态检测模型,可以用来检测身体的关键点。

import cv2

import mediapipe as mp

初始化MediaPipe姿态检测模块

mp_pose = mp.solutions.pose

pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)

初始化摄像头

cap = cv2.VideoCapture(0)

while cap.isOpened():

ret, frame = cap.read()

if not ret:

break

将图像转换为RGB格式

image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

处理图像并获取姿态关键点

results = pose.process(image)

将图像转换回BGR格式以便显示

image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

if results.pose_landmarks:

在图像上绘制姿态关键点

mp.solutions.drawing_utils.draw_landmarks(

image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)

显示图像

cv2.imshow('Pose Detection', image)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

  1. 结合眼动检测和姿态检测

你可以将上述两个代码片段结合起来,同时进行眼动检测和姿态检测。

import cv2

import mediapipe as mp

初始化MediaPipe面部检测和姿态检测模块

mp_face_mesh = mp.solutions.face_mesh

face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5)

mp_pose = mp.solutions.pose

pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)

初始化摄像头

cap = cv2.VideoCapture(0)

while cap.isOpened():

ret, frame = cap.read()

if not ret:

break

将图像转换为RGB格式

image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

处理图像并获取面部网格和姿态关键点

face_results = face_mesh.process(image)

pose_results = pose.process(image)

将图像转换回BGR格式以便显示

image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)

if face_results.multi_face_landmarks:

for face_landmarks in face_results.multi_face_landmarks:

获取眼睛的关键点

left_eye = face_landmarks.landmark[33] # 左眼中心

right_eye = face_landmarks.landmark[263] # 右眼中心

在图像上绘制眼睛位置

h, w, c = image.shape

left_eye_pos = (int(left_eye.x * w), int(left_eye.y * h))

right_eye_pos = (int(right_eye.x * w), int(right_eye.y * h))

cv2.circle(image, left_eye_pos, 5, (0, 255, 0), -1)

cv2.circle(image, right_eye_pos, 5, (0, 255, 0), -1)

if pose_results.pose_landmarks:

在图像上绘制姿态关键点 mp.solutions.drawing_utils.draw_landmarks(

image, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS)

显示图像

cv2.imshow('Eye and Pose Tracking', image)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

  1. 总结

以上代码展示了如何使用Python和MediaPipe库来实现眼动检测和姿态检测。你可以根据需要进一步优化和扩展这些代码,例如添加更多的关键点检测、姿态估计、或者将检测结果用于其他应用场景。

相关推荐
Ai墨芯1119 分钟前
深度学习水论文:特征提取
人工智能·深度学习
SHIPKING39326 分钟前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决
人工智能·深度学习·机器学习
颜颜yan_30 分钟前
Python面向对象编程详解:从零开始掌握类的声明与使用
开发语言·redis·python
闻道且行之1 小时前
Windows|CUDA和cuDNN下载和安装,默认安装在C盘和不安装在C盘的两种方法
windows·深度学习·cuda·cudnn
我的ID配享太庙呀2 小时前
Django 科普介绍:从入门到了解其核心魅力
数据库·后端·python·mysql·django·sqlite
@蓝莓果粒茶3 小时前
LeetCode第350题_两个数组的交集II
c++·python·学习·算法·leetcode·职场和发展·c#
生医转码,四海为家3 小时前
零基础-动手学深度学习-6.6 卷积神经网络(LeNet)
人工智能·深度学习·cnn
FinAnalyzer3 小时前
如何在 InsCodeAI 上搭建并使用 Jupyter Notebook 环境?
ide·python·jupyter
拉姆哥的小屋3 小时前
用 Flask 打造宠物店线上平台:从 0 到 1 的全栈开发实践
数据库·oracle·flask
java1234_小锋3 小时前
【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
python·自然语言处理·flask