如何在不依赖函数调用功能的情况下结合工具与大型语言模型

当大型语言模型(LLM)原生不支持函数调用功能时,如何实现智能工具调度?本文通过自然语言解析+结构化输出控制的方法来实现。

GitHub代码地址

核心实现步骤

  1. 定义工具函数
    使用@tool装饰器声明可调用工具:
python 复制代码
from langchain_core.tools import tool

@tool
def multiply_by_max(
        a: int, 
        b: list[int]
) -> int:
    """将a乘以b列表中的最大值"""
    return a * max(b)

@tool
def divide_by(a: float, b: float) -> float:
    """将a除以b"""
    return a / b
  1. 构建响应模型
    使用Pydantic定义结构化响应格式:
python 复制代码
from pydantic import BaseModel, Field

class Response(BaseModel):
    name: str = Field(None, description="调用的函数名称")
    args: dict = Field(None, description="函数参数")
  1. 创建输出解析器
python 复制代码
from langchain_core.output_parsers import PydanticOutputParser

parser = PydanticOutputParser(pydantic_object=Response)
  1. 设计提示模板
python 复制代码
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages([
    ("human", """
    请根据需求从下列函数中选择合适的工具:
    可用工具:\n{functions}\n
    输出格式:\n{format_instructions}
    问题:{query}
    """)
]).partial(
    functions=[tool.args_schema.model_json_schema() for tool in [multiply_by_max, divide_by]],
    format_instructions=parser.get_format_instructions()
)

工作原理

  1. 自然语言解析:LLM分析用户query的语义
  2. 工具匹配:根据函数描述自动选择最合适的工具
  3. 参数提取:从自然语言中提取结构化参数
  4. 格式化输出:生成符合预定格式的JSON响应

示例演示

示例1:数学计算

python 复制代码
chain = prompt | ChatOpenAI(model="qwen-max") | parser
result = chain.invoke("请将3乘以一至九的最大值")
# 输出:
# name='multiply_by_max', args={'a':3, 'b':[1,2,3,4,5,6,7,8,9]}

示例2:无匹配工具

python 复制代码
result = chain.invoke("查询北京天气")
# 输出:
# name=None, args=None
相关推荐
辛勤的程序猿6 分钟前
改进的mamba核心块—Hybrid SS2D Block(适用于视觉)
人工智能·深度学习·yolo
serve the people9 分钟前
如何区分什么场景下用机器学习,什么场景下用深度学习
人工智能·深度学习·机器学习
xjxijd15 分钟前
Serverless 3.0 混合架构:容器 + 事件驱动,AI 服务弹性伸缩响应快 3 倍
人工智能·架构·serverless
csdn_aspnet19 分钟前
如何用爬虫、机器学习识别方式屏蔽恶意广告
人工智能·爬虫·机器学习
weixin_4577600024 分钟前
RNN(循环神经网络)原理
人工智能·rnn·深度学习
代码AI弗森38 分钟前
意图识别深度原理解析:从向量空间到语义流形
人工智能
姚华军42 分钟前
RagFlow、Dify部署时,端口如何调整成指定端口
人工智能·dify·ragflow
老蒋新思维1 小时前
创客匠人峰会新视角:AI 时代知识变现的 “组织化转型”—— 从个人 IP 到 “AI+IP” 组织的增长革命
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
JoannaJuanCV1 小时前
自动驾驶—CARLA仿真(0)报错记录
人工智能·机器学习·自动驾驶
小白狮ww1 小时前
Matlab 教程:基于 RFUAV 系统使用 Matlab 处理无人机信号
开发语言·人工智能·深度学习·机器学习·matlab·无人机·rfuav