如何在不依赖函数调用功能的情况下结合工具与大型语言模型

当大型语言模型(LLM)原生不支持函数调用功能时,如何实现智能工具调度?本文通过自然语言解析+结构化输出控制的方法来实现。

GitHub代码地址

核心实现步骤

  1. 定义工具函数
    使用@tool装饰器声明可调用工具:
python 复制代码
from langchain_core.tools import tool

@tool
def multiply_by_max(
        a: int, 
        b: list[int]
) -> int:
    """将a乘以b列表中的最大值"""
    return a * max(b)

@tool
def divide_by(a: float, b: float) -> float:
    """将a除以b"""
    return a / b
  1. 构建响应模型
    使用Pydantic定义结构化响应格式:
python 复制代码
from pydantic import BaseModel, Field

class Response(BaseModel):
    name: str = Field(None, description="调用的函数名称")
    args: dict = Field(None, description="函数参数")
  1. 创建输出解析器
python 复制代码
from langchain_core.output_parsers import PydanticOutputParser

parser = PydanticOutputParser(pydantic_object=Response)
  1. 设计提示模板
python 复制代码
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages([
    ("human", """
    请根据需求从下列函数中选择合适的工具:
    可用工具:\n{functions}\n
    输出格式:\n{format_instructions}
    问题:{query}
    """)
]).partial(
    functions=[tool.args_schema.model_json_schema() for tool in [multiply_by_max, divide_by]],
    format_instructions=parser.get_format_instructions()
)

工作原理

  1. 自然语言解析:LLM分析用户query的语义
  2. 工具匹配:根据函数描述自动选择最合适的工具
  3. 参数提取:从自然语言中提取结构化参数
  4. 格式化输出:生成符合预定格式的JSON响应

示例演示

示例1:数学计算

python 复制代码
chain = prompt | ChatOpenAI(model="qwen-max") | parser
result = chain.invoke("请将3乘以一至九的最大值")
# 输出:
# name='multiply_by_max', args={'a':3, 'b':[1,2,3,4,5,6,7,8,9]}

示例2:无匹配工具

python 复制代码
result = chain.invoke("查询北京天气")
# 输出:
# name=None, args=None
相关推荐
serve the people1 小时前
TensorFlow 图执行(tf.function)的 “非严格执行(Non-strict Execution)” 特性
人工智能·python·tensorflow
泰迪智能科技1 小时前
图书推荐分享 | 堪称教材天花板,深度学习教材-TensorFlow 2 深度学习实战(第2版)(微课版)
人工智能·深度学习·tensorflow
吴佳浩4 小时前
LangChain 深入
人工智能·python·langchain
LplLpl116 小时前
AI 算法竞赛通关指南:基于深度学习的图像分类模型优化实战
大数据·人工智能·机器学习
依米s6 小时前
各年度人工智能大会WAIC核心议题(持续更新)
人工智能·人工智能+·waic·人工智能大会+
python机器学习建模7 小时前
22篇经典金融风控论文复现(2025年11月更新)
人工智能·机器学习·论文·期刊·金融风控
Codebee7 小时前
深度解析AI编程技术:从原理到实践,手把手教你落地
人工智能·设计模式·开源
武汉唯众智创7 小时前
基于五级工的人工智能训练师教学解决方案
人工智能·ai·产教融合·人工智能训练师·五级工·ai训练师
执笔论英雄7 小时前
【RL】python协程
java·网络·人工智能·python·设计模式
你好~每一天8 小时前
未来3年,最值得拿下的5个AI证书!
数据结构·人工智能·算法·sqlite·hbase·散列表·模拟退火算法