如何在不依赖函数调用功能的情况下结合工具与大型语言模型

当大型语言模型(LLM)原生不支持函数调用功能时,如何实现智能工具调度?本文通过自然语言解析+结构化输出控制的方法来实现。

GitHub代码地址

核心实现步骤

  1. 定义工具函数
    使用@tool装饰器声明可调用工具:
python 复制代码
from langchain_core.tools import tool

@tool
def multiply_by_max(
        a: int, 
        b: list[int]
) -> int:
    """将a乘以b列表中的最大值"""
    return a * max(b)

@tool
def divide_by(a: float, b: float) -> float:
    """将a除以b"""
    return a / b
  1. 构建响应模型
    使用Pydantic定义结构化响应格式:
python 复制代码
from pydantic import BaseModel, Field

class Response(BaseModel):
    name: str = Field(None, description="调用的函数名称")
    args: dict = Field(None, description="函数参数")
  1. 创建输出解析器
python 复制代码
from langchain_core.output_parsers import PydanticOutputParser

parser = PydanticOutputParser(pydantic_object=Response)
  1. 设计提示模板
python 复制代码
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages([
    ("human", """
    请根据需求从下列函数中选择合适的工具:
    可用工具:\n{functions}\n
    输出格式:\n{format_instructions}
    问题:{query}
    """)
]).partial(
    functions=[tool.args_schema.model_json_schema() for tool in [multiply_by_max, divide_by]],
    format_instructions=parser.get_format_instructions()
)

工作原理

  1. 自然语言解析:LLM分析用户query的语义
  2. 工具匹配:根据函数描述自动选择最合适的工具
  3. 参数提取:从自然语言中提取结构化参数
  4. 格式化输出:生成符合预定格式的JSON响应

示例演示

示例1:数学计算

python 复制代码
chain = prompt | ChatOpenAI(model="qwen-max") | parser
result = chain.invoke("请将3乘以一至九的最大值")
# 输出:
# name='multiply_by_max', args={'a':3, 'b':[1,2,3,4,5,6,7,8,9]}

示例2:无匹配工具

python 复制代码
result = chain.invoke("查询北京天气")
# 输出:
# name=None, args=None
相关推荐
TuringAcademy21 分钟前
AAAI爆款:目标检测新范式,模块化设计封神之作
论文阅读·人工智能·目标检测·论文笔记
The Open Group3 小时前
英特尔公司Darren Pulsipher 博士:以架构之力推动政府数字化转型
大数据·人工智能·架构
Ronin-Lotus4 小时前
深度学习篇---卷积核的权重
人工智能·深度学习
.银河系.4 小时前
8.18 机器学习-决策树(1)
人工智能·决策树·机器学习
敬往事一杯酒哈4 小时前
第7节 神经网络
人工智能·深度学习·神经网络
三掌柜6664 小时前
NVIDIA 技术沙龙探秘:聚焦 Physical AI 专场前沿技术
大数据·人工智能
2502_927161284 小时前
DAY 42 Grad-CAM与Hook函数
人工智能
Hello123网站4 小时前
Flowith-节点式GPT-4 驱动的AI生产力工具
人工智能·ai工具
yzx9910135 小时前
Yolov模型的演变
人工智能·算法·yolo
若天明6 小时前
深度学习-计算机视觉-微调 Fine-tune
人工智能·python·深度学习·机器学习·计算机视觉·ai·cnn